background in order to show their configuration at various stages from purchase to application.

Observations on Connectors From Set I

A typical, tightly packaged connector is shown in Figure 1. Approximately 90% of such connectors received from the utilities had one or more bends of 1/2" radius or less.

A second packaged connector is shown in Figure 2. Approximately 58% of such connectors received from the utilities had one or more bends of 1/2" radius or less.

Observations on Connectors From Set II

A field-installed/removed connector is shown in Figure 3. The bends appear to be in one plane. A second field-installed/removed connector is shown in Figure 4. This connector indicates bends in more than one plane.

Observations on Connectors From Set III

Figure 5 shows a typical unpackaged connector received directly from the manufacturer. Figure 6 shows the four designs of connectors used in this study. Differences in size and shape of corrugations and coating color are evident.

2.3 Pre-Conditioning of Set III Connectors

Based on an analysis of the bends observed in connector Sets I and II, a 1/2" radius bend was selected as being representative of the most severe bend that the connectors were subjected to during packaging and/or field installation. The unpackaged connectors received from the manufacturers (Set III) were subjected to bends of this radius before exposure to the ammonia vapor test.
Figure 2 - Packaged Connector (Coiled)
Figure 4 - Field-Installed/Removed Connector
Figure 6 - Unpackaged Connectors
Figure 7 - Method of Bending Unpackaged Connectors Around a 1/2" Radius Mandrel
Figure 9 - Schematic of ANSI Z21.24 Ammonia Vapor Test

*NOTE: The configuration used in this study differs somewhat from that shown. (See Figure 11).
Figure 11 - Connector Mounted on Cover of Ammonia Test Bucket
Figure 13 - Ammonia Test on Unpackaged Connectors
3.0 CONCLUSIONS

The following conclusions can be drawn from this study:

1. The mechanical stresses seen by a connector after it leaves the factory are potentially more severe than those created by the mechanical pre-conditioning steps specified in Z21.24. Approximately 60% of the packaged and field-installed/removed connectors (Sets I and II) received for evaluation had been bent to a radius equal to or smaller than the 1-1/8" radius specified in the ANSI test. Approximately 38% of connector Sets I and II had been bent to a radius of 1/2" or less. There were several bends in each connector and some had been subjected to reverse bends and bends in different planes.

2. A more representative pre-conditioning should include bending straight connectors 180° around a 1/2" radius mandrel, straightening and then bending 180° in the opposite direction around the same mandrel before conducting the ammonia test. Slightly more than one-half of the Set III connectors leaked at the end of the ammonia test.

3. The percent of connectors in Set III which leaked varied significantly from manufacturer to manufacturer. For example, 18% of the connectors in Group B and 73% of the connectors in Group D leaked. The factors influencing these differences were not identified.

4. Compliance with the test procedures used in this study is attainable with present connector designs and manufacturing processes. Approximately one-half of the connectors from Set III did not leak after being pre-conditioned and exposed to ammonia vapor as described above.
4.0 RECOMMENDATIONS

As a result of this study, the following recommendations are made for future work:

1. The ANSI Z21.24 standard should be reviewed by the Z21 Connector Subcommittee to evaluate the need for more severe mechanical pre-conditioning of straight connectors before conducting the ammonia test. Bending straight connectors to a 1/2" radius using the technique developed in this work (bend, straighten, reverse bend) would create brass and coating stresses more representative of actual field conditions than the procedures now used in the Z21.24 standard.

2. In addition to the ANSI Z21.24 standard for indoor connectors, there is also a proposed ANSI standard for connectors used outdoors. Further studies should be undertaken to address conditions pertaining to outdoor use, such as temperature cycling and exposure to ultraviolet light, salt solutions, and animal urine.

3. Since this study has only considered the integrity of indoor connector coatings under mechanical stress, further studies should be undertaken to determine the effects of abrasion of the coating on connector performance for both indoor and outdoor connector applications.

4. Pending review of the Z21.24 connector standard, the manufacturers of coated brass connectors should again request those firms providing packaging services to use procedures which will not create sharp bends in coated connectors. Earlier efforts by connector manufacturers to encourage more care in packaging connectors were apparently unsuccessful.
LOG OF MEETING

DIRECTORATE FOR ENGINEERING SCIENCES

SUBJECT: American National Standard Sub-Committee on Standard for Connectors for Gas Appliances.

DATE OF MEETING: December 1, 1987 PLACE: Harley Hotel Cleveland, Ohio

LOG ENTRY SOURCE: Thomas E. Caton, ESMT

COMMISSION ATTENDEES:

Thomas E. Caton, ESMT

NON-COMMISSION ATTENDEES:

Stanley L. Blachman, American Gas Association
Kay Broughton, American Gas Association
James Brown, U.S. Brass
Richard Deringer, Columbia Gas Distribution Companies
Sam Foti, Hose Master, Inc.
John P. Grehoski, Commonwealth Gas Company
Daryl L. Hosler, Southern California Gas Company
Fred Byman, Brass-Craft Manufacturing Co.
Charles C. Lamar, Lamar Consultants, Inc.
Marvin Leffler, Flexible Fabricators, Inc.
Clarence B. Puchalski, The Peoples Gas Light and Coke Co.
Allan Rodolitz, Flexible Fabricators, Inc.
Jerome J. Segal, Dormont Manufacturing Co.
Jeff D. Walker, General Appliance Manufacturing Inc.

SUMMARY OF MEETING:

A. The purpose of this meeting was to decide what proposed revisions to American National Standards for connectors should be accepted. The revisions included:

1. Proposed revisions to American National Standard for Metal Connectors for Gas Appliances - deferred.

2. Proposed revisions to American National Standard for Flexible Connectors of other than all-metal construction - accepted.

3. Proposed revision to American National Standard for Movable Gas Appliances to include additional connector diameters - adopted.
4. Consideration of recommendations and comments regarding proposed outdoor connector Standard Z21.75 - deferred for remailing requests for comments. The Subcommittee was receptive to CPSC staff recommendations that indoor flexible connectors should conform to requirements as severe as those for the outdoor connectors. The above remailing will suggest that brass indoor gas connectors should conform to the stricter standards of outdoor connectors.

5. The review of prospectus entitled, "Evaluation of Connectors for Outdoor Installation", to fund research methods for evaluating coating integrity - sent to ANSI Z21 main committee.

6. Incorporation in the test methods of leakage tests which allow minimal leakage and reference it in the reconnection of fittings test of the Metal Connector Standard, Z21.24 - adopted.

7. Motion to reconsider the inclusion of connectors for recreational vehicles in the proposed outdoor connector Standard - passed, a letter will be written to ANSI Z21.

B. Thomas Caton was appointed to a committee to supervise the "Evaluation of Connectors for Outdoor Use".

C. Further information on this meeting can be obtained from Thomas Caton, room 738, 492-6494.

D. On December 2, 1987, Thomas Caton toured the American Gas Association Laboratories. There he met with Spencer P. Grieco (216) 524-4990 ext. 319, who is the American Gas Association Laboratory contact with CPSC.

DISTRIBUTION
OS
EX-PB
ES
File
M. Neily, ESMT

ESMT:TCATON:amc:2/24/88
PROSPECTUS

EVALUATION OF CONNECTORS FOR OUTDOOR INSTALLATION

SUBMITTED BY

AMERICAN GAS ASSOCIATION LABORATORIES

TO

GAS RESEARCH INSTITUTE

JULY, 1987
EVALUATION OF CONNECTORS FOR OUTDOOR INSTALLATION

Objective

The objective of this prospectus is to develop performance criteria and test procedures for outdoor corrugated metal connectors.

Background

Corrugated metal connectors have been used indoors for many years to facilitate the connection of gas-fired equipment to gas supply piping. Depending on the type of equipment being connected, these connectors must conform to either ANSI Z21.24, "Metal Connectors for Gas Appliances", ANSI Z21.45, "Flexible Connectors of Other Than All-Metal Construction for Gas Appliances", or ANSI Z21.69, "Connectors for Movable Gas Appliances".

Corrugated connectors also have been used outdoors for the connection of equipment, such as roof top heating units, to gas supply piping and for connecting manufactured (mobile) homes to the gas supply. Connectors in outdoor applications are exposed to conditions which are not addressed in ANSI Standards Z21.24 and Z21.69. Consequently, a proposed new standard: "Gas Connectors for Connection of Fixed Appliances for Outdoor Installation and Manufactured (Mobile) Homes to the Gas Supply", was developed by the Accredited Standards Committee Z21.

Historically, most connectors have been constructed of brass which, if unprotected, can be susceptible to corrosive attack from various substances, such as household cleaning agents.
containing ammonia. For this reason, all of the aforementioned standards include test procedures to evaluate a connector's resistance to corrosive attack by ammonia atmospheres. In order to address this corrosion problem, corrugated brass connectors have been provided with protective coatings such as epoxy.

Although these coatings appear to enhance connector performance, there have been reports that the coating has failed in some instances, exposing the brass to corrosive attack resulting in leakage of gas.

Concern was expressed that the ANSI standards do not adequately address the integrity of connector coatings, particularly with respect to the effects of mechanical stresses applied during packaging, unpackaging, installation and possible subsequent movement of the connected equipment.

Further concern was expressed that coatings on connectors and uncoated connectors used outdoors should be evaluated for the possible effects of sunlight, freezing/thawing, chemical attack from substances such as lawn fertilizers, animal urine, etc.

The Gas Appliance Technology Center (GATC) work at A.G.A.L., sponsored by the Gas Research Institute (GRI), has addressed several aspects of gas connectors. To date, the following work has been completed:

- Tests aimed at evaluating the integrity of coatings on indoor connectors packaged for retail sale, and as stressed during packaging, unpackaging, installation and removal using both the ANSI ammonia test and a new "Holiday" test developed by the Consumer Product Safety Committee based on electrical conductivity through the coating.
Investigation of a possible correlation between the ammonia and "holiday" tests.

This prospectus is aimed at conducting the needed work for outdoor connectors, to address possible effects of weather, sun, etc, on the integrity of connector coatings or on uncoated connectors.

Benefit to Consumer

The program proposed for outdoor connectors will provide the consumer with safer gas appliance connectors. Improved connectors can enhance sales of outdoor gas appliances.

Work Statement

The proposed Standard covering "Gas Connectors For Connection of Fixed Appliances for Outdoor Installation and Manufactured (Mobile) Homes to the Gas Supply" will be reviewed.

Unstressed connectors of various materials and designs from several manufacturers of outdoor connectors will be obtained for study. The connectors will be examined visually and microscopically for integrity of the coating. The integrity of the coated connectors will be monitored using the "holiday" test. Both coated and uncoated connectors will be evaluated. The connectors will be subjected to the following test conditions:

1) Freezing and thawing in contact with water.
2) Flexing at temperature extremes of -40 F and 140 F.
3) Exposure to sunlight (ultraviolet light).
4) Exposure to animal urine.

5) Exposure to lawn/garden fertilizers.

The work will be conducted in consultation with A.G.A.L.'s staff and an advisory group comprised of connector manufacturers, gas utility representatives, and others.

Recommendations will be developed for:

1) Test methods to evaluate coating integrity.

2) Test methods to evaluate a connector's ability to withstand outdoor installation conditions.

Time and Cost Estimate

It is estimated that this project will require 6 months at a funding level of $60,000.
TO: Victor Petralia, Director, Midwestern Regional Office
THROUGH: Otto Hall, AED for Field Operations
THROUGH: Harry L. Cohen, Director, OPM
THROUGH: James F. Hoebel, Program Manager, Household Structural Products Program, OPM
FROM: Ronald L. Medford, Project Manager, Household Structural Products Program, Office of Program Management

SUBJECT: Flexible Connector Press Clippings

Attached are two news clippings sent to the Commission by the Illinois Press Association containing advice on flexible connectors for gas appliances. Both articles contain recommendations, which could possibly result in a hazard for anyone following through on them.

The first article advises consumers to "Check the heater for leaks and corrosion." This advice is contrary to the position of the Commission's technical staff working on flexible connectors. It is our position that checking the connector might flex it and, if it has become embrittled by stress corrosion, it could leak gas and cause a fire or explosion. We recommend that consumers request their gas companies to check their connectors.

The second article implies that only connectors manufactured prior to 1968 "may be dangerous." Investigations have shown that even connections made to the 1973 revised ANSI standard are failing in the same modes as some of the older connectors, but perhaps to a lesser degree. Connectors more than several years old should be checked periodically by trained service personnel, not consumers. Any gas odor should be reported immediately and if a strong gas odor is detected, the premises should be evacuated, the gas turned off at the outdoor valve and the gas company notified. We found the advice in the Northern Illinois Gas Company clipping to be reasonably good.

We would very much appreciate it if you would contact the newspapers involved and inform them of our safety concerns and try to get them to run a correction. You may also wish to coordinate this with the gas companies in those localities. Let us know how you make out and if you have any questions, please contact us.

Thanks!

Attachments

6(b) CLEARED: 6-28-88

[Signature]
No Mrs Identified

Exempted

Mrs Notified

Comments Processed
You can prevent gas connectors from leaking and saving lives. Here are the steps:

1. **Check Gas Connectors**
 - Turn off the gas supply to the appliance.
 - Use a soapy water solution to check for leaks around the connections.
 - If you see bubbles, there is a gas leak.

2. **Inspect Gas Equipment and Appliances**
 - Check for damage or corrosion.
 - Ensure all connections are tight.

3. **Install a Carbon Monoxide Detector**
 -位置应在主入口附近，确保在发生泄漏时能及时报警。

4. **Review Gas Line Inspections**
 - Gas companies typically perform inspections.
 - Regular inspections are essential for safety.

5. **Follow Safety Guidelines**
 - Use gas appliances properly.
 - Keep doors and windows open.

6. **Install a Gas Shut-Off Valve**
 - Installing a gas shut-off valve can prevent gas leaks.

7. **Consult Professionals**
 - If you're unsure about gas installations, consult a professional.

8. **Be Prepared**
 - Have an emergency plan for gas emergencies.

By following these steps, you can help prevent gas leaks and save lives. Protect your home and the lives of those around you.
Faulty gas connectors deadly
Fire, explosion potential place lives and property at risk

By JULIET HORN

EXCLUSIVE

According to the U.S. Consumer Product Safety Commission, millions of faulty gas connectors may be in homes across the country. These connectors can cause fires and explosions, putting lives and property at risk.

The faulty gas connector, as shown in the image, is a common cause of gas leaks and fires. If not properly installed or maintained, these connectors can lead to serious accidents.

The commission advises homeowners to check their gas connectors for signs of wear or damage and to replace them if necessary. They also recommend using a certified installer for any new or replacement installations.

These incidents highlight the importance of regular maintenance and the need for proper installation of gas connectors. The commission encourages all homeowners to take the necessary precautions to ensure their safety.

If you notice any signs of wear or damage on your gas connectors, it is recommended to contact a professional for a thorough inspection. Safety should always be the priority in the home environment.
Faulty gas connectors

The gas safety aspects of gas piping must be observed with care. The gas pipeline in the house should be checked for leaks. A leak can be detected by a soapy water test or by using a gas leak detector. If a leak is found, it should be fixed immediately to avoid dangerous situations.

The gas pipe should be examined regularly. The gas valve should be checked for any signs of wear or damage. The gas line should be inspected for any signs of corrosion or rust. The gas connections should be checked for any signs of leaks.

In the event of a gas leak, the gas should be turned off immediately. If possible, the house should be evacuated. The gas should be turned off at the source and then the gas line should be isolated.

The gas should be allowed to dissipate in the open air before re-igniting the gas. The gas line should be checked for any signs of damage before it is re-ignited. The gas should be re-ignited slowly to avoid any risk of explosion.

The gas line should be checked for any signs of corrosion or rust. The gas connections should be checked for any signs of leaks. The gas pipeline in the house should be checked for leaks.

The gas should be allowed to dissipate in the open air before re-igniting the gas. The gas pipeline should be checked for leaks. The gas should be turned off at the source and then the gas line should be isolated.

If a leak is found, it should be fixed immediately to avoid dangerous situations. The gas pipeline in the house should be checked for leaks. The gas should be allowed to dissipate in the open air before re-igniting the gas.

The gas should be allowed to dissipate in the open air before re-igniting the gas. The gas pipeline should be checked for leaks. The gas should be turned off at the source and then the gas line should be isolated.

If a leak is found, it should be fixed immediately to avoid dangerous situations. The gas pipeline in the house should be checked for leaks. The gas should be allowed to dissipate in the open air before re-igniting the gas.

The gas should be allowed to dissipate in the open air before re-igniting the gas. The gas pipeline should be checked for leaks. The gas should be turned off at the source and then the gas line should be isolated.

If a leak is found, it should be fixed immediately to avoid dangerous situations. The gas pipeline in the house should be checked for leaks. The gas should be allowed to dissipate in the open air before re-igniting the gas.

The gas should be allowed to dissipate in the open air before re-igniting the gas. The gas pipeline should be checked for leaks. The gas should be turned off at the source and then the gas line should be isolated.

If a leak is found, it should be fixed immediately to avoid dangerous situations.
Gas company gives advice

The Northern Illinois Gas Company and the Consumer Product Safety Commission recommend the following tips for the care of flexible gas connectors:

- Some flexible connectors manufactured before 1968 may be unsafe, the Consumer Product Safety Commission has warned. If you are concerned, DO NOT MOVE THE APPLIANCE, you may cause a gas rupture. Instead, call a qualified service agent or NI-Gas to make the inspection.
- Regular inspection of connectors is recommended. If one shows evidence of damage or corrosion, have it replaced.
- A connector should be located where no one will step, sit or lean on it. Never install one through a wall, floor or ceiling. Use only one connector per appliance, and make sure it is no longer than six feet.
- Be very careful when moving an appliance for cleaning. Avoid bumping or bending the flexible connector.
- Check connectors periodically for corrosion. Detergent, cleaning solvent, ammonia and cooking grease can cause green spots to develop on brass connectors or grayish-white powder residue on aluminum connectors. If corrosion occurs, the connector should be replaced.
- Check around your appliance connectors occasionally for gas odor. If you smell gas, telephone the gas company immediately. Emergency numbers are listed in your local telephone directory.
- If the gas odor is very strong, open windows and doors to ventilate and get out of the house. Do not turn any electrical switches on or off. Do not light matches, smoke cigarettes or create any source of combustion. Telephone the gas company from a neighbor's house.