LOG OF MEETING DIRECTORATE FOR ENGINEERING SCIENCES

<u>SUBJECT:</u> Recreational Off-Highway Vehicles (ROVs) – Meeting requested by the U.S. Consumer Product Safety Commission (CPSC) staff to discuss test methodology and test results of static and dynamic testing of ROVs by SEA Limited for CPSC staff and Carr Engineering Inc. (CEI) for the Recreation Off-Highway Vehicle Association (ROHVA).

DATE OF MEETING: July 19, 2012

PLACE OF MEETING: U.S. Consumer Product Safety Commission, Bethesda, MD

LOG ENTRY SOURCE: Caroleene Paul, ESME

COMMISSION ATTENDEES: See attached attendance list

NON-COMMISSION ATTENDEES: See attached attendance list

SUMMARY OF MEETING:

CPSC staff presented staff's motivation for testing recreational off-highway vehicles (ROVs), summarized the conclusions from the extensive testing performed by SEA Limited, and introduced Dr. Gary Heydinger to discuss the test methodologies, data, and results of the ROV test effort. Presentation is attached.

Dr. Gary Heydinger of SEA Limited presented the test methodologies used in performing static and dynamic tests of 10 different ROVs. The presentation included SEA's data quality checks and discussion of the results of the dynamic tests. SEA believes their laboratory and dynamic test results are both very accurate and very repeatable. Presentation attached.

Dr. Gary Heydinger presented a review of materials related to drop throttle J-turn tests presented to CPSC staff by the Recreational Off-Highway Vehicle Association (ROHVA) in November 2011. SEA's presentation stressed that the inability of Carr Engineering Inc. (CEI) to duplicate some of the testing results of SEA does not mean that the testing results of SEA are inaccurate or unrepeatable. It was noted that the equation (submitted by ROHVA to CPSC staff) that was used by CEI to calculate the ground plane lateral acceleration is incorrect and does not conform to the equation cited in ROHVA's voluntary standard, ANSI/ROHVA 1-2011, or to the National Highway Traffic Safety Administration (NHTSA) Final Rule on the New Car Assessment Program; Rollover Resistance. In particular, the submitted CEI equation does not use measured vertical acceleration in calculating ground plane lateral acceleration and, per SAE sign convention, the equation adds to the magnitude of lateral acceleration instead of subtracting. It was also noted that SEA was able to measure peak lateral acceleration at vehicle rollover in over 200 dynamic tests because the data plots for each test clearly show the peak acceleration. Conversely, the exemplar lateral acceleration plot presented by CEI (in November 2011) indicates a lateral acceleration that is physically impossible based on the static stability of the vehicle. SEA believes CEI's lack of adherence to exacting test methodologies and/or errors in

processing data are the likely reason for the variation in test results between SEA and CEI. Presentation attached.

James Walker of CEI presented additional data on J-turn repeatability tests that were performed by CEI. CEI performed 15 J-turn test runs on the same vehicle and found variations in the peak lateral acceleration measured at vehicle rollover and variations in the steering wheel angle measured at vehicle rollover. CEI was also unable to find correlation between understeer gradient and lateral acceleration. CEI uses a body roll correction factor in calculating the ground plane lateral acceleration and the resultant equation differs from the equation cited in ANSI/ROHVA 1-2011 and in NHTSA's Final Rule on the New Car Assessment Program. CEI also uses a different sign convention for the body roll angle that is not consistent with the Society of Automotive Engineers (SAE) sign convention. CEI believes their method of calculating ground plane lateral acceleration is equivalent to the method used by NHTSA and is therefore appropriate. Presentation attached.

COMMISSION ATTENDEES:

NAME	ORGANIZATION	PHONE	E-MAIL
George Borlase	CPSC	301-987-2472	gborlase@cpsc.gov
Robert Franklin	CPSC	301-504-7708	rfranklin@cpsc.gov
Sarah Garland	CPSC	301-504-7331	sgarland@cpsc.gov
Carrae Green	CPSC	301-504-7532	cgreen@cpsc.gov
Jason Goldsmith	CPSC	301-504-7262	jgoldsmith@cpsc.gov
Ian Hall	CPSC	301-987-2323	ihall@cpsc.gov
Justin Jirgl	CPSC	301-504-7814	jjirgl@cpsc.gov
Kevin Lee	CPSC	301-987-2486	klee@cpsc.gov
Barbara Little	CPSC	301-504-7879	blittle@cpsc.gov
Caroleene Paul	CPSC	301-987-2225	cpaul@cpsc.gov
Sarah Newens	CPSC	301-504-7791	snewens@cpsc.gov
Anthony Teems	CPSC	301-504-2329	ateems@cpsc.gov

NON-COMMISSION ATTENDEES:

NAME	NAME ORGANIZATION		E-MAIL		
Mark Austrian	Kelley Drye & Warren	202-342-8495	maustrian@kelleydrye.com		
Ted Bettin	Arctic Cat	218-681-9799	jafisher@textron.com		
Stacy Bogart	Polaris Industries	763-542-0506	stacy.bogart@polaris.com		
Russel Brenan	Kawasaki Motors Corp USA	949-770-0400	russel.brenan@kmc-usa.com		
Annamarie Daley	Barnes & Thornburg	612-270-4598	adaley@btlaw.com		
Aaron Deckard	Polaris Industries	651-398-0568	aaron.deckard@polaris.com		
Roy Deppa	Marchica & Deppa	301-774-3889	roy@marchicadeppa.com		
Jeff Eyres	Polaris Industries	763-542-2309	jeff.eyres@polaris.com		
Brad Franklin	Yamaha Motor Corp	714-761-7842	brad_franklin@yamaha-motors.com		
Tyler Furman	Kawasaki Motors Corp USA	402-476-6600 ext. 1176	tfurman@lcn.kmmfg.com		
Brian Gabel	Yamaha Motor Corp.	714-761-7798	brian_gabel@yamaha-motors.com		
Carol Gardner	E-Z-GO Textron	706-772-5916	cgardner@textron.com		
Dennis A Guenther	SEA LTD	800-782-6851	dguenther@sealimited.com		
Gary Heydinger	SEA LTD	800-782-6851	gheydinger@sealimited.com		
Erika Jones	Mayer Brown	202-263-3232	ejones@mayerbrown.com		
Ed Krenik	Bracewell & Guiliani	202-828-5877	edward.krenik@bgllp.com		
David Murray	Willkie Farr & Gallagher	202-303-1000	dmurray@willkie.com		
Jan Rintamaki	Polaris Industries	763-847-8350	jan.rintamaki@polaris.com		
John Rupp	E-Z-GO Textron	401-457-3674	jrupp@textron.com		
Greg Schultz	Aberdeen Test Center	410-278-3510	gregory.a.schultz.civ@mail.mil		
Marie-Claude Simard	BRP	450-532-6195	marie-claude.simard@brp.com		
Duane Taylor	ROHVA	703-416-0444	dtaylor@rohva.org		
Kathy Van Kleek	ROHVA	703-416-0444	kvankleek@rohva.org		
Paul Vitrano	ROHVA	949-727-4211 x3119	pvitrano@rohva.org		
James Walker	Carr Engineering	281-894-8955	jwjr@ceimail.com		
Mike Wiegard	Eckert Seamans	202-659-6603	mwiegard@eckertseamans.com		
Douglas Wilson	Kawasaki Motors Corp	949-770-0400	doug villoop @kmo :::-		
	USA	ext. 2761	doug.wilson@kmc-usa.com		
Kathy Woods	OPEI	703-549-7600	kwoods@opei.org		

COMMISSION ATTENDEES:

NAME	ORGANIZATION	PHONE	E-MAIL
George Borlase	CPSC	301-987-2472	gborlase@cpsc.gov
Robert Franklin	CPSC	301-504-7708	rfranklin@cpsc.gov
Sarah Garland	CPSC	301-504-7331	sgarland@cpsc.gov
Carrae Green	CPSC	301-504-7532	cgreen@cpsc.gov
Jason Goldsmith	CPSC	301-504-7262	jgoldsmith@cpsc.gov
Ian Hall	CPSC	301-987-2323	ihall@cpsc.gov
Justin Jirgl	CPSC	301-504-7814	jjirgl@cpsc.gov
Kevin Lee	CPSC	301-987-2486	klee@cpsc.gov
Barbara Little	CPSC	301-504-7879	blittle@cpsc.gov
Sarah Newens	CPSC	301-504-7791	snewens@cpsc.gov

NON-COMMISSION ATTENDEES:

NAME	NAME ORGANIZATION		E-MAIL		
Mark Austrian	Kelley Drye & Warren	202-342-8495	maustrian@kelleydrye.com		
Ted Bettin	Arctic Cat	218-681-9799	jafisher@textron.com		
Stacy Bogart	Polaris Industries	763-542-0506	stacy.bogart@polaris.com		
Russel Brenan	Kawasaki Motors Corp USA	949-770-0400	russel.brenan@kmc-usa.com		
Annamarie Daley	Barnes & Thornburg	612-270-4598	adaley@btlaw.com		
Aaron Deckard	Polaris Industries	651-398-0568	aaron.deckard@polaris.com		
Roy Deppa	Marchica & Deppa	301-774-3889	roy@marchicadeppa.com		
Jeff Eyres	Polaris Industries	763-542-2309	jeff.eyres@polaris.com		
Brad Franklin	Yamaha Motor Corp	714-761-7842	brad_franklin@yamaha-motors.com		
Tyler Furman	Kawasaki Motors Corp USA	402-476-6600 ext. 1176	tfurman@lcn.kmmfg.com		
Brian Gabel	Yamaha Motor Corp.	714-761-7798	brian_gabel@yamaha-motors.com		
Carol Gardner	E-Z-GO Textron	706-772-5916	cgardner@textron.com		
Dennis A Guenther	SEA LTD	800-782-6851	dguenther@sealimited.com		
Gary Heydinger	SEA LTD	800-782-6851	gheydinger@sealimited.com		
Erika Jones	Mayer Brown	202-263-3232	ejones@mayerbrown.com		
Ed Krenik	Bracewell & Guiliani	202-828-5877	edward.krenik@bgllp.com		
David Murray	Willkie Farr & Gallagher	202-303-1000	dmurray@willkie.com		
Jan Rintamaki	Polaris Industries	763-847-8350	jan.rintamaki@polaris.com		
John Rupp	E-Z-GO Textron	401-457-3674	jrupp@textron.com		
Greg Schultz	Aberdeen Test Center	410-278-3510	gregory.a.schultz.civ@mail.mil		
Marie-Claude Simard	BRP	450-532-6195	marie-claude.simard@brp.com		
Duane Taylor	ROHVA	703-416-0444	dtaylor@rohva.org		
Kathy Van Kleek	ROHVA	703-416-0444	kvankleek@rohva.org		
Paul Vitrano	ROHVA	949-727-4211 x3119	pvitrano@rohva.org		
James Walker	Carr Engineering	281-894-8955	jwjr@ceimail.com		
Mike Wiegard	Eckert Seamans	202-659-6603	mwiegard@eckertseamans.com		
Douglas Wilson	Kawasaki Motors Corp USA	949-770-0400 ext. 2761	doug.wilson@kmc-usa.com		
Kathy Woods	OPEI	703-549-7600	kwoods@opei.org		

CPSC Staff Meeting With Recreational Off-Highway Vehicle Association Dynamic and Static Testing July 19, 2012

Introduction

Purpose: Communicate test methods and results used by CPSC staff to evaluate ROV vehicles

Agenda

- Participant introductions
- CPSC Staff motivation for testing ROVs
- Dr. Gary Heydinger of SEA Limited
 - Test Methods and Results
- Q & A

Recreational Off-Highway Vehicles

Dynamic and Static Testing

CPSC Staff Initiated Dynamic and Static Tests to:

- Document, evaluate, and compare stability and handling of typical ROVs
- Support rulemaking
- Assess characteristics affecting rollover
 - Rollover is a significant incident factor
- Gather consistent facts
 - Dynamic characteristics
 - Static measures
- Compare alternative performance measures

Independent Testing Conducted By SEA Limited

Ten Market Representative Vehicles Evaluated*

- Dynamic Tests
 - Drop and Constant Throttle J-Turn
 - Constant Radius Circle
 - Slowly Increasing Steer
 - Sinusoidal Sweep Steering
 - Flick Steering Input
- Vehicle Inertial Measurement Facility (VIMF)
 - Center of Gravity (CG) Location
 - Pitch, Roll, and Yaw Moments of Inertia

^{*} Five also tested at AberdeenTest Center (A, B, D, F, H)

Independent Testing Conducted By SEA Limited

- Direct Measurements
 - Track Width
 - Wheel Base
 - Weight Distribution
 - Ground Clearance
 - · Steering Ratio
- Calculations
 - SSF
 - Kst
- Static Tilt Table Tests

Recreational Off-Highway Vehicles

Dynamic and Static Testing

Conclusions

- Dropt Throttle J-Turn is a reliable test to measure directly lateral acceleration at rollover threshold
 - Rollover thresholds, Ay, vary from 0.62g to 0.79g.
 - Rollover steering angles vary from 85 degrees to 210 degrees at 30 mph drop throttle.
 - All vehicles tested experienced untripped rollover.
- Constant Radius Circle Test is reliable test to measure vehicle steering characteristic
 - Five vehicles have sub-limit oversteer.
 - Sub-limit oversteer is correctable with suspension changes.

S-E-A, Ltd. Presentation to CPSC and ROVHA on Methodologies used to Generate Static (Laboratory) and Dynamic (Field Testing) Test Data and Summary of Test Results

Gary J. Heydinger, Ph.D., P.E. Director Vehicle Dynamics Division

July 19, 2012

1

Objectives of CPSC Testing Program

- To obtain vehicle characteristic data that is accurate and repeatable using measurement and test methods that are proven and accepted in the academic and industrial communities.
- To document, study, and compare the dynamic performance characteristics of commonly available recreational off-highway vehicles (ROV's).

Objectives of This Presentation

- To present methodologies used by S-E-A to generate static (laboratory) and dynamic (field testing) test data
- To provide an overview and partial summary of test results obtained by S-E-A

3

S-E-A, Ltd. Reports to CPSC

Vehicle Characteristics Measurements Of Recreational Off-Highway Vehicles, April 2011

http://www.cpsc.gov/library/foia/foia11/os/rov.pdf

Vehicle Characteristics Measurements Of Recreational Off-Highway Vehicles – Additional Results for Vehicle J, August 2011

http://www.cpsc.gov/library/foia/foia11/os/rovj.pdf

Laboratory Testing

"This section describes the laboratory measurements made as well as computations made to compute various rollover resistance metrics and other vehicle characteristics. This section is divided into three parts, one covering the vehicle characteristics and metrics determined from Vehicle Inertia Measurement Facility (VIMF) testing, one covering the vehicle characteristics and metrics determined from tilt-table-testing, and one covering the other miscellaneous laboratory measurements made."

5

Vehicle Loading Conditions

1. Curb

Full fluids and with the vehicle manufacturer's specified tires and tire pressures

2. Operator

Occupant load used was equivalent to a 95th percentile adult male weighing nominally 213 lb.

3. Operator and Passenger

4. Operator, Passenger, and Cargo Bed Load (GVWR)

The Cargo Bed Load used was specified to be the lesser of the vehicle manufacturer's maximum cargo bed load or the load required to reach the vehicle manufacturer's Gross Vehicle Weight Rating (GVWR)

5. Operator, Instrumentation, and Outriggers

For Loading Condition #5, the vehicle's lateral, longitudinal, and vertical CG positions were made to closely match those of Loading Condition #3.

6. Operator, Instrumentation, Cargo & Outriggers (GVWR)

For Loading Condition #6, the vehicle's lateral, longitudinal, and vertical CG positions were made to closely match those of Loading Condition #4.

S-E-A Vehicle Inertia Measurement Facility (VIMF) Tests

- Vehicle Weight
- Vehicle Center-of-Gravity Position
 Longitudinal, Lateral and Vertical (CG Height) Positions
- Vehicle Pitch, Roll and Yaw Moment of Inertias
- Vehicle Roll/Yaw Product of Inertia

Based on detailed error analyses and supported by the results of actual repeat testing, the repeatability of VIMF center of gravity height measurements is within $\pm 0.5\%$ of the measured values.

7

VIMF Uses a Stable Pendulum Method to Determine CG Height

ISO 10392, Last Revised 2011

Road Vehicles – Determination of Centre of Gravity

Another Method is Axle Lift Method

(also Called Suspension (Lift) or Balance Angle Method)

SAE J874, Last Revised 1993

Earthmoving Machines - Method for Locating the Center of Gravity

Text from Scope of ISO 10392

"The axle lift method can generally provide centre-ofgravity height accuracy in the range of a few percent, while the stable pendulum method can provide accuracy in the range of 0.5%."

ROV on S-E-A Vehicle Inertia Measurement Facility (VIMF)

9

Rollover Resistance Metrics Based on Laboratory Measurements

Static Stability Factor (SSF)

Static Stability Factor (SSF) is given by:

$$SSF = \frac{T_{AVE}}{2 \times H_{CG}}$$

where T_{AVE} is the Average Track Width, and H_{CG} is the Vehicle CG Height.

SSF is a fundamental rollover resistance metric which equals the lateral acceleration in g's at which rollover begins in the most simplified rollover analysis of a vehicle represented by a rigid body without suspension movement or tire deflections. NHTSA uses SSF, measured with vehicles loaded in a Driver Only configuration, to evaluate passenger vehicle rollover resistance for NCAP.

Rollover Resistance Metrics Based on Laboratory Measurements

Lateral stability coefficient (KST)

Lateral stability coefficient (KST) is given by:

$$KST = \frac{L \times T_R + L_{CG} \times (T_F - T_R)}{2 \times L \times H_{CG}}$$

where L is the Vehicle Wheelbase, T_F is the Front Track Width, T_R is the Rear Track Width, and L_{CG} is the Longitudinal Distance from the Rear Axle to the CG, and H_{CG} is the Vehicle CG Height.

NOTE: If the front track width and rear track width of a vehicle are equal, then KST is equal to SSF.

11

Rollover Resistance Metrics Based on Laboratory Measurements

Critical Sliding Velocity (CSV)

Critical Sliding Velocity (CSV) is given by:

$$CSV = \sqrt{\frac{2 \times g \times I_{OXX}}{M \times H_{CG}^{2}}} \left(\sqrt{\frac{T_{AVE}^{2}}{4} + H_{CG}^{2}} - H_{CG} \right)$$

where g is the Gravitational Constant,

M is the Vehicle Mass,

T_{AVE} is the Average Track Width,

H_{CG} is the Vehicle CG Height, and

I_{oxx} is the Effective Roll Moment of Inertia about the Tip Pivot, given by:

$$I_{\text{OXX}} = I_{\text{XX}} + M \left(\frac{T_{\text{AVE}}^2}{4} + H_{\text{CG}}^2 \right)$$

where I_{xx} is the Vehicle Roll Moment of Inertia about its CG.

S-E-A Ltd. Tilt Table Tests

- Driver's side and passenger's side tilts were performed.
- S-E-A tilt table set-up provides for smooth tilting at rates as slow as 0.1 deg/sec.
- The S-E-A tilt table platform is very rigid, having deflections of less than 0.1 inch for a vehicle weight up to 10,000 lb. It is also very flat, with a flatness tolerance of +/- 0.1 inch.
- Based on repeatability evaluations conducted using a range of different vehicles, S-E-A believes that the repeatability of the measurements of two-wheel lift is within +/- 0.1 degrees.

13

Section from: **ANSI/OPEI B71.9 - 2012**American National Standard for Multipurpose
Off-Highway Utility Vehicles

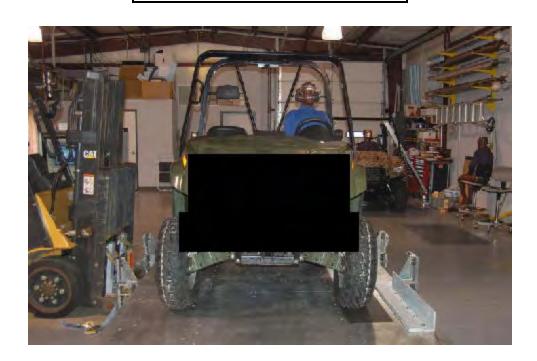
8.7 Tilt Table Stability

8.7.1.4 Required Tools, Instrumentation or Other Devices

a) A device to measure the angle of the test surface with an accuracy of ± 0.5 degree (0.87% grade).

Rollover Resistance Metrics Based on Laboratory Measurements

Tilt Table Angle (TTA) and Tilt Table Ratio (TTR)


Tilt Table Angle (TTA) is the angle at which two-wheel lift occurs.

Tilt Table Ratio (TTR) is given by:

$$TTR = tan (TTA)$$

15

ROV on S-E-A Tilt Table

Other Laboratory Measurements Made by S-E-A Ltd.

- Front and Rear Ground Clearance in the Operator and Passenger Loading Condition
- Steering Ratio in the Operator and Passenger Loading Condition
 - Linear curve fits of the measured data in the range of $\pm 180^{\circ}$ of steering wheel angle were used to compute the overall steering ratios.

17

Vehicle A

	Curb	Operator	Operator & Passenger	Operator, Passenger & Cargo (GVWR)	Operator, Inst & Outriggers	Operator, Inst, Cargo & Outriggers (GVWR)
VIMF Test Number		4180	4181	4182	4183	4184
Total Vehicle Weight (lb)	1218.7	1431.7	1644.5	1998.4	1644.2	1998.8
Left Front Weight (lb)	259.8	317.5	343.9	334.5	357.3	341.6
Right Front Weight (lb)	278.7	309.4	371.6	357.2	352.2	350.9
Left Rear Weight (lb)	319.5	441.2	444.0	629.4	462.4	621.5
Right Rear Weight (lb)	360.7	363.6	485.0	677.3	472.3	684.8
Front Track Width (in)	45.20	45.20	45.40	45.25	45.40	45.25
Rear Track Width (in)	43.60	43.60	44.25	45.50	44.25	45.50
Average Track Width (in)	44.40	44.40	44.83	45.38	44.83	45.38
Wheelbase (in)	75.15	75.15	75.15	75.15	75.15	75.15
CG Longitudinal (in)	41.94	42.24	42.45	49.14	42.72	49.11
CG Lateral (in)	1.09	-1.33	0.94	0.80	0.07	0.82
CG Height (in)		24.56	25.52	25.35	25.26	
Roll Inertia - I _{XX} (ft-lb-s ²)		129	155	159	190	
Pitch Inertia - I _{YY} (ft-lb-s ²)		274	286	365	298	
Yaw Inertia - Izz (ft-lb-s ²)		288	299	376	338	
Roll/Yaw - I _{xz} (ft-lb-s ²)		9	15	24	12	
SSF		0.904	0.878	0.895	0.887	
KST		0.906	0.880	0.894	0.889	
CSV (mph)		7.32	7.17	7.17	7.47	
Tilt Table: Direction		Driver	Driver	Driver	Driver	
Tilt Table: First Wheel Lift		Rear	Rear	Rear	Rear	
Tilt Table Angle (deg)		33.0	32.8	32.7	32.7	
Tilt Table Ratio (TTR)		0.649	0.645	0.643	0.643	
Tilt Table: Direction		Passenger	Passenger	Passenger	Passenger	
Tilt Table: First Wheel Lift		Rear	Rear	Rear	Rear	
Tilt Table Angle (deg)		37.7	32.1	32.0	33.3	
Tilt Table Ratio (TTR)		0.773	0.626	0.626	0.658	
Average Tilt Table Angle (deg)		35.3	32.4	32.4	33.0	
Average Tilt Table Ratio (TTR)		0.711	0.635	0.635	0.650	
Front Ground Clearance (in)			8.60			
Rear Ground Clearance (in)			10.20			
Steering Ratio (deg/deg)			13.2			

Dynamic Testing

"This section describes the dynamic testing conducted at TRC between May 3 and October 12, 2010 (for Vehicles A through I) and on May 20, 2011 (for Vehicle J). The dynamic test evaluations included steering maneuvers on the flat dry asphalt surface of the Transportation Research Center's Vehicle Dynamics Area (VDA)."

19

S-E-A Designed and Fabricated CPSC Safety Outriggers

- S-E-A designed and built triangulated aluminum outriggers that extend on both sides on the tests vehicles.
- CPSC outriggers mount to the ROPS/OPS structures on the ROV's.
- The standard weight of these outriggers is 106 lb.
- The CG height of the CPSC outriggers is generally close to the test vehicle CG height.
- CPSC outriggers used for all vehicles except Vehicle F.
- For Vehicle F, a single titanium beam with nylon pucks at its ends was mounted securely to the top of the floorboard to serve as the safety outrigger.

21

TRC's Vehicle Dynamics Area (VDA)

- Asphalt
- 1% Slope 0.6 degrees
- All vehicles tested in their most open driveline configuration

Table 1: TRC Skid Number Measurements					
Location	\	/DA			
Pad#	V-:	5, dry			
Pavement	As	phalt			
Surface	Unt	reated			
Condition		Dry			
Date	Peak PBC	Slide SN			
5/5/2010	92.5	82.2			
6/1/2010	98.1	84.7			
6/21/2010	92.3	85.0			
7/5/2010	95.7	83.2			
7/19/2010	97.0	82.8			
8/2/2010	98.2	84.9			
8/23/2010	93.3	83.5			
9/7/2010	96.6	86.5			
9/27/2010	94.6	86.3			
5/11/2011	92.7	85.0			

Section from: **ANSI/OPEI B71.9 - 2012**American National Standard for Multipurpose Off-Highway Utility Vehicles

7.5.2 Test Course for the Dynamic Stability Tests

- a) The test course shall be a wide, horizontally flat surface sloping less than **1.0 degree (1.7% grade)**, ...
- b) The coefficient of friction for the dynamic stability test shall **be 0.8 ± 0.05**. A passing test using a surface with a coefficient of friction above **0.85** shall be allowed. Coefficient of friction shall be measured using the procedure found in ASTM E 1337-90 or another scientifically valid method that produces repeatable results comparable to ASTM E 1337-90.

8.5.4 Required Tools, Instrumentation or Other Devices

a) A device to measure the angle of the test surface with an accuracy of ±0.5 degree (0.87% grade).

23

Section from: ANSI/ROHVA 1 - 2011 American National Standard for Multipurpose Off-Highway Utility Vehicles

8.3.1 Test Surface.

8.3.1.1 Test-Surface Preparation. Surface used for dynamic testing shall be constructed of asphalt or concrete having a <u>friction coefficient</u> <u>of at least 0.90</u> when measured in accordance with ASTM E 1337. The slope of this surface shall be no greater than <u>1 degree (1.7%)</u>.

S-E-A Vehicle Loading: Weights of Driver and Test Equipment

Table 2: Weights of Driver and Test Equipment					
Object	Weight (lb)				
Test Driver with Helmet	182				
ASC Handwheel Unit	34				
ASC Battery Box	27				
ASC Electronics Box and Cables	25				
SEA Data Acquisition Computer	10				
Auxiliary 12V Battery	25				
RT3002 GPS/IMU, Antenna, and Cables	10				
SEA Power Distribution Box and Misc. Straps	7				
CPSC Triangulated Aluminum Safety Outriggers	106				
Total Nominal Weight	426				

25

S-E-A Vehicle Loading: Weights for GVWR Conditions

Table 3: Weight Difference Between Representative Operator and Passenger and GVWR Loading				
Vehicle Weight Difference (Ib)				
А	355			
В	274			
С	487			
D	983			
Е	496			
F	601			
G	911			
Н	357			
l	458			

Vehicle J tested in only the Representative Operator and Passenger Loading Condition

S-E-A Instrumentation

						ı	
Encoder on SEA, Ltd. ASC	Oxford Technical Solutions RT3002 Inertial and GPS Navigation System			Transducer	Table 4:		
Steering Wheel Angle	Vehicle Heading and Sideslip Angle	Roll and Pitch Angles	Speed	Roll, Pitch, and Yaw Rates	Longitudinal, Lateral, and Vertical Accelerations	Measurement	Table 4: Instrumentation Used During Dynamic Testing
+_800 deg	No Limit Specified	No Limit Specified	No Limit Specified	± 100 deg/s	± 10 g	Range	ynamic Testi
<u>+</u> 0.25 deg	0.1° ¹ ♂	0.03° ¹ ♂	0.2% 10	0.1% 10	0.1% 10	Accuracy or Linearity	ng

Automated Steering Controller (ASC) Mounted on a ROV Navigation System (Red Box) RT3002 Inertial and GPS Mounted on a ROV

27

Translating Measured Accelerations to Vehicle CG Location

- When using a multi-axis inertial sensing system that measures linear accelerations and roll, pitch, and yaw angular rates, the position of the sensor must be accurately measured relative to the CG of the vehicle. These data are required to translate the acceleration quantities measured at the sensor location to those that occur at the actual vehicle CG, in order to remove roll, pitch and yaw effects.
- The equations on the following slide can be used to translate the acceleration data. The equations are derived from equations of general relative acceleration for a translating reference frame and they use the SAE convention for a Vehicle Dynamics Coordinate System.
- Upon entering the displacement information from the sensor location to the vehicle CG, the acceleration sensor used by S-E-A provides for a direct measurement of the accelerations at the CG of the vehicle.

See equations on following slide and reference:

Consumer Information; New Car Assessment Program; Rollover Resistance; Final Rule, Federal Register, Part II, Department of Transportation, NHTSA, Pg. 59274, October 14, 2003.

29

Equation for Translating Measured Accelerations to Vehicle CG Location

$$\begin{split} &x_{corrected}'' = x_{accel}'' \quad \left(\Theta'^2 \quad \Psi'^2\right) x_{disp} + \left(\Theta'\Phi' \quad \Psi''\right) y_{disp} + \left(\Psi'\Phi' + \Theta''\right) z_{disp} \\ &y_{corrected}'' - y_{accel}'' - \left(\Theta'\Phi' + \Psi''\right) x_{disp} - \left(\Phi'^2 + \Psi'^2\right) y_{disp} + \left(\Psi'\Theta' - \Phi''\right) z_{disp} \\ &z_{corrected}'' = z_{accel}'' + \left(\Psi'\Phi' - \Theta''\right) x_{disp} + \left(\Psi'\Theta' + \Phi''\right) y_{disp} - \left(\Phi'^2 + \Theta'^2\right) z_{disp} \end{split}$$

where:

 $x_{corrected}^{"}$, $y_{corrected}^{"}$, and $z_{corrected}^{"}$ - longitudinal, lateral, and vertical accelerations, respectively, at the vehicle's CG

x_{accel}, y_{accel}, and z_{accel} = longitudinal, lateral, and vertical accelerations, respectively, at the accelerometer location

 x_{disp} , y_{disp} , and z_{disp} - longitudinal, lateral, and vertical displacements, respectively, of the CG with respect to the accelerometer location

 ϕ' and ϕ'' - roll rate and roll acceleration, respectively

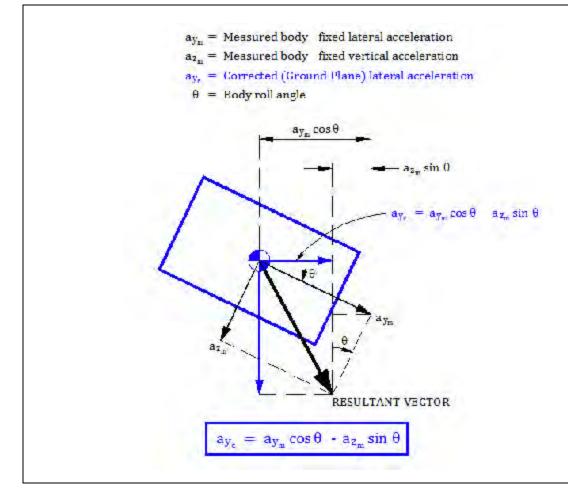
⊗ and ⊗ = pitch rate and pitch acceleration, respectively

 Ψ and Ψ = yaw rate and yaw acceleration, respectively

Equation for Planar Ground Plane (Corrected) Lateral Acceleration

Accelerometers rigidly mounted in vehicles sense accelerations in a vehicle-body-fixed coordinated system. Ground plane (or so-called "Corrected") lateral acceleration can be computed from the measured vehicle-body-fixed lateral acceleration and the vehicle-body-fixed vertical acceleration (both of which sense accelerations caused by the maneuver and by gravity). The ground plane (Corrected) lateral acceleration is the acceleration parallel to the road plane, and it is computed as (using SAE vehicle coordinate sign conventions):

Corrected Ay =Measured Ay×cos(ϕ) Measured Az×in(ϕ) where ϕ =body roll angle


See derivation on following slide and two references:

Consumer Information; New Car Assessment Program; Rollover Resistance; Final Rule, Federal Register, Part II, Department of Transportation, NHTSA, Pg. 59274, October 14, 2003.

American National Standard for Recreational Off-Highway Vehicles ANSI/ROHVA 1 - 2011, 2011

31

32

S-E-A Data Processing

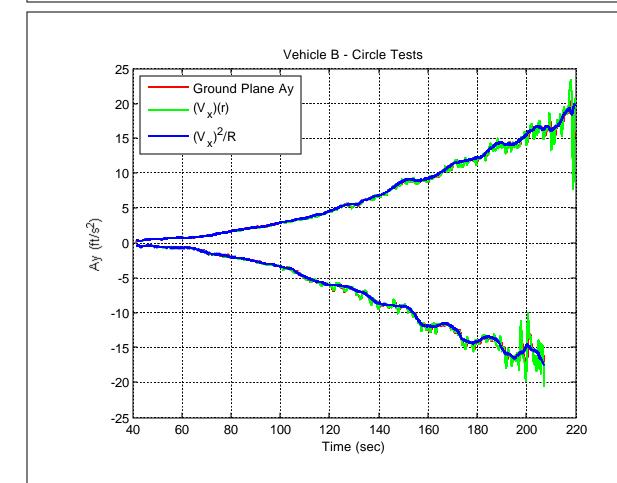
- All data channels sampled at 100 Hz (100 samples per second)
- Details on digital filters used as part of processing the data channels are listed in the April 2011 S-E-A report.
- Details on any calculations used to generate graphs and curve fits of measured data are listed in the April 2011 S-E-A report.

33

S-E-A Lateral Acceleration Measurements

- S-E-A used a sensor that provides for a direct measurement of ground plane lateral acceleration (sometimes referred to as Corrected Ay).
- S-E-A's sensor was also configured to provide ground plane lateral acceleration at the measured center of gravity of each vehicle.

S-E-A Data Quality Checks


During SAE J266 constant radius circle tests the following fundamental relationships involving ground plane lateral acceleration (Ay), vehicle longitudinal speed (Vx), yaw rate (r), and circle radius (R) hold true:

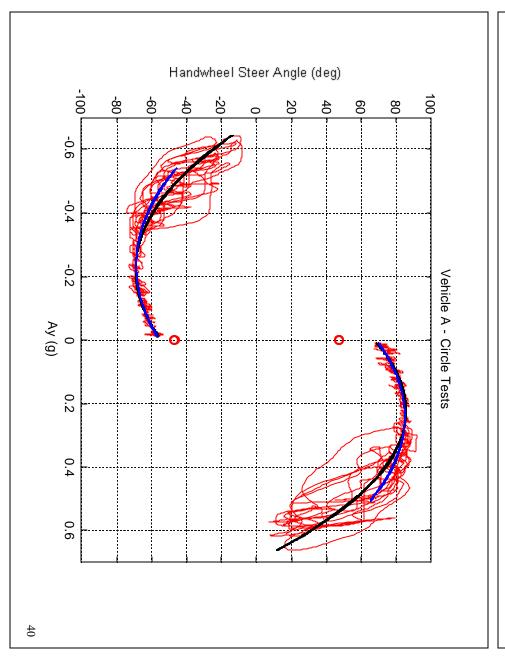
Ground Plane (Corrected)
$$Ay = V_x \times r = \frac{{V_x}^2}{R}$$

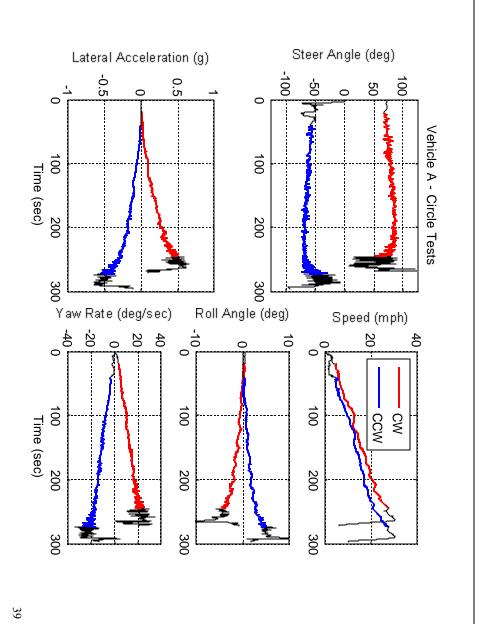
The graph on the following slide contains data measured by S-E-A during the circle tests for Vehicle B in the representative Operator plus Passenger loading condition. The plots indicate that the S-E-A data is consistent with these fundamental relationships.

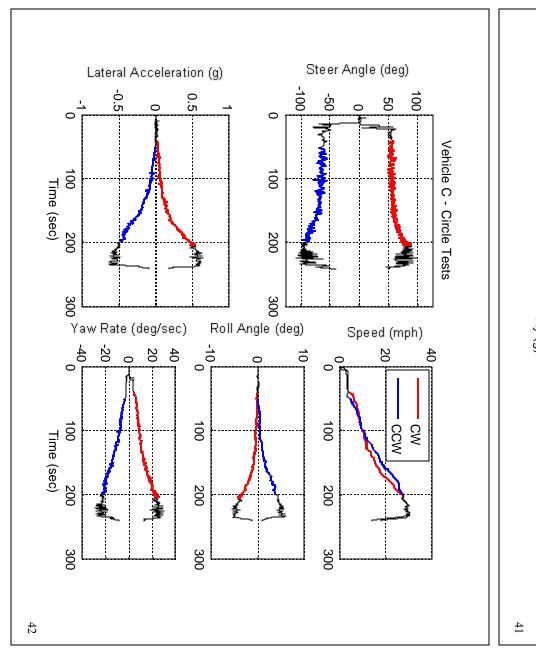
S-E-A performed similar data quality checks for all vehicles tested for and reported to CPSC, and confirmed that the quality of this data for all vehicles tested was similar to that shown on the following page. The data channels used for ground plane Ay, Vx and r during these tests are the same data channels S-E-A used for all tests, including the dropped throttle J-turn tests.

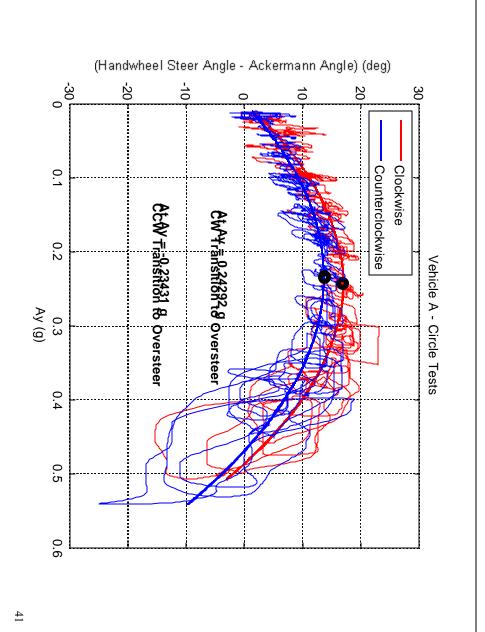
35

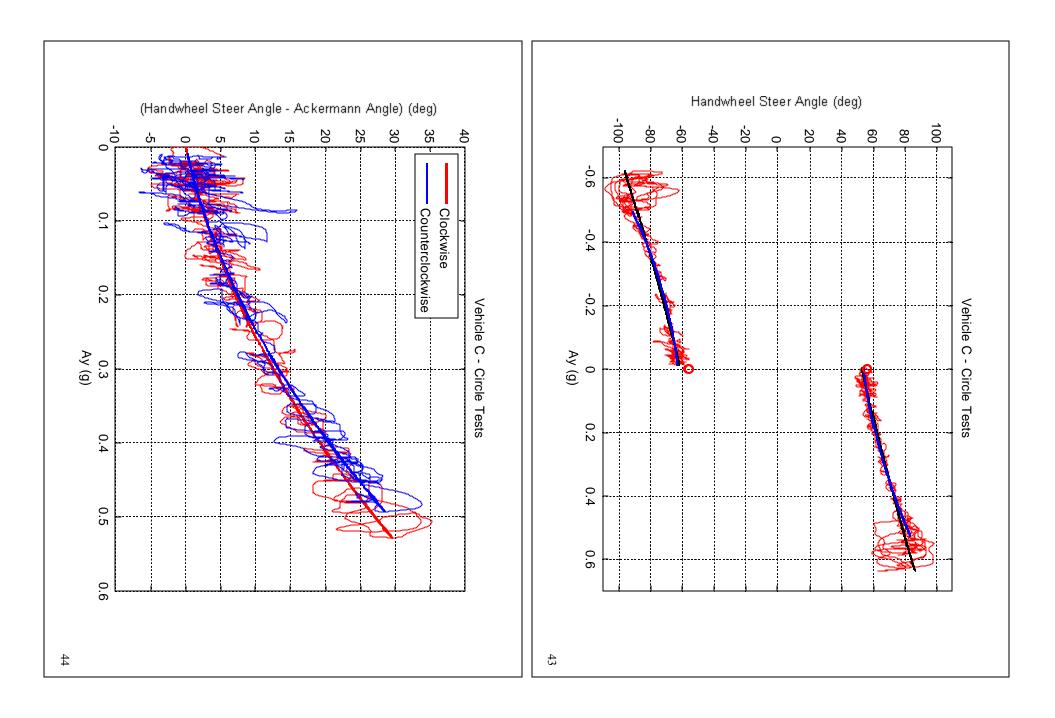
Dynamic Tests Conducted by S-E-A

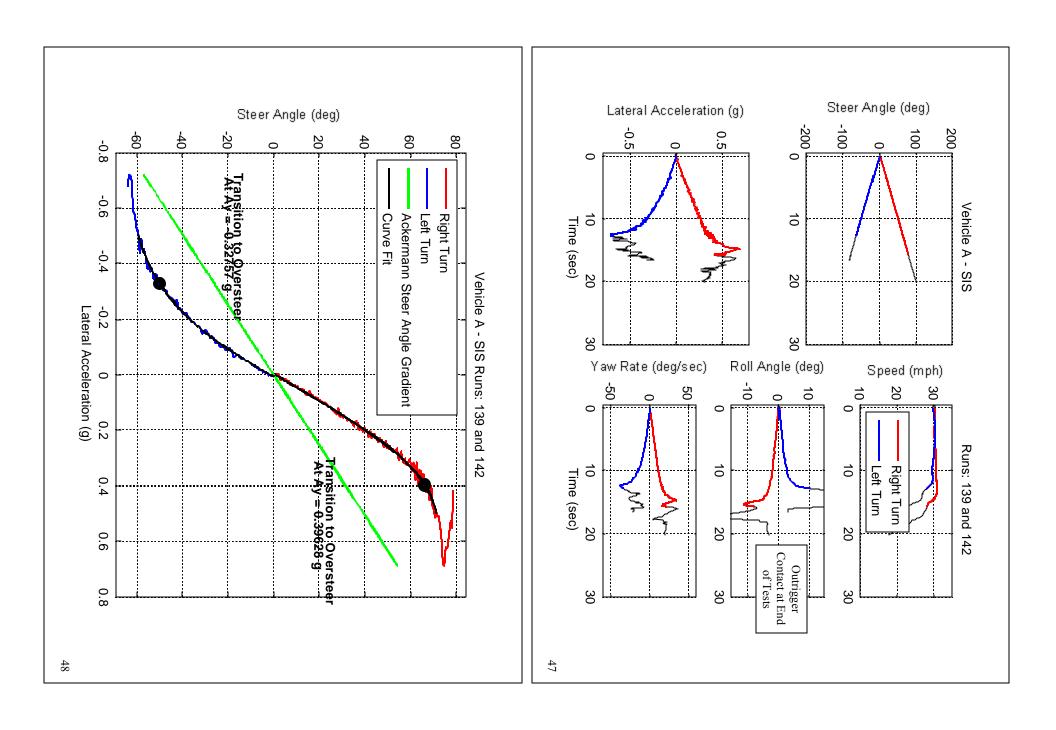

- Constant Radius (100 ft) Circle Tests
- Constant Speed (30 mph) Slowly Increasing Steer Tests
- Dropped Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)
- Constant Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)
- Sinusoidal Sweep Steering (Frequency Response) Tests (20 mph)
- Constant Speed (30 mph) Steering Flick Tests
- Maximum Speed Tests

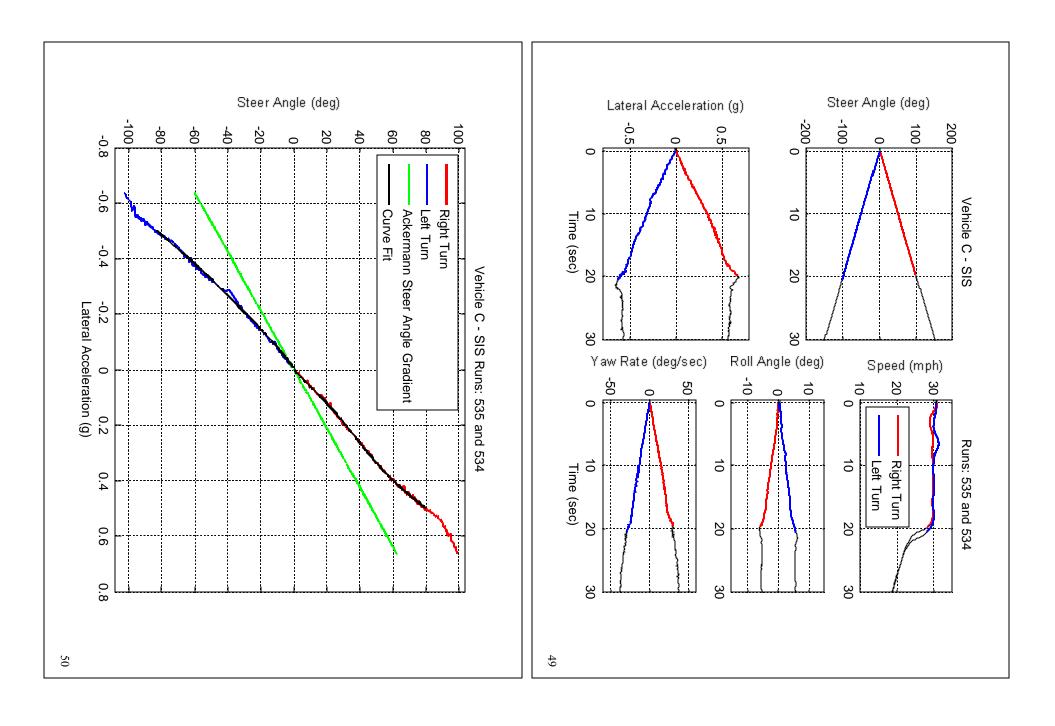

Over 900 Dynamic Tests Were Performed


37


Constant Radius (100 ft) Circle Tests


- Tests Conducted in both Clockwise (CW) and Counterclockwise (CCW) Directions
- Tests Conducted in Accordance with: SAE Surface Vehicle Recommended Practice - Steady-State Directional Control Test Procedures For Passenger Cars and Light Trucks, SAE J266, 1996.
- Detailed results from the circle tests are contained in Appendix C of the S-E-A reports.



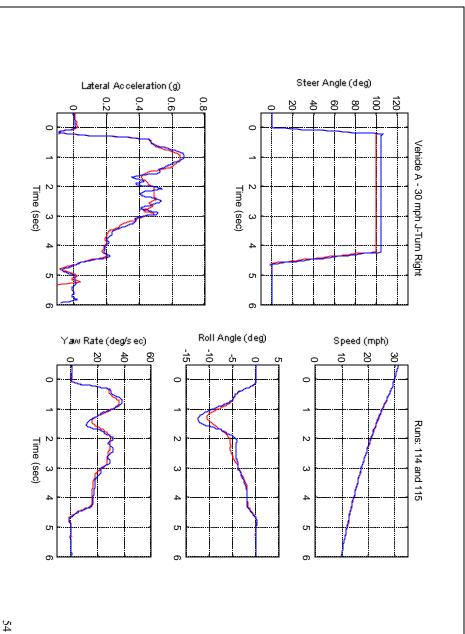


Constant Speed (30 mph) Slowly Increasing Steer Tests

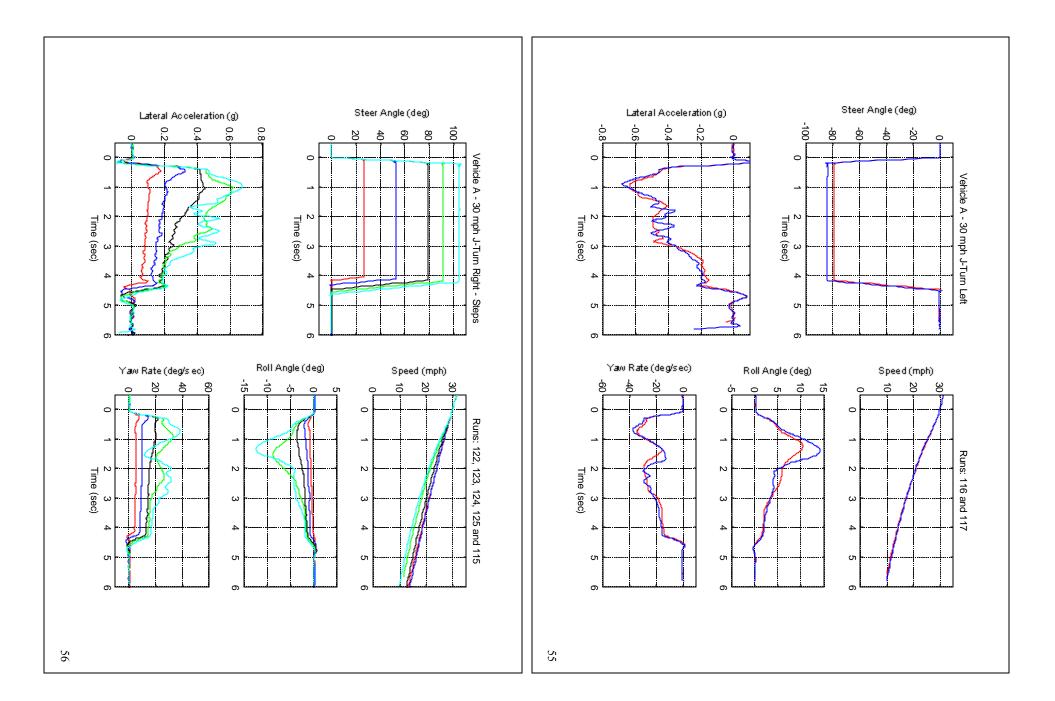
- Tests Conducted in both Clockwise (CW) and Counterclockwise (CCW) Directions
- Tests Conducted in Accordance with: SAE Surface Vehicle Recommended Practice - Steady-State Directional Control Test Procedures For Passenger Cars and Light Trucks, SAE J266, 1996.
- Detailed results from the slowly increasing steer tests are contained in Appendix D of the S-E-A reports.

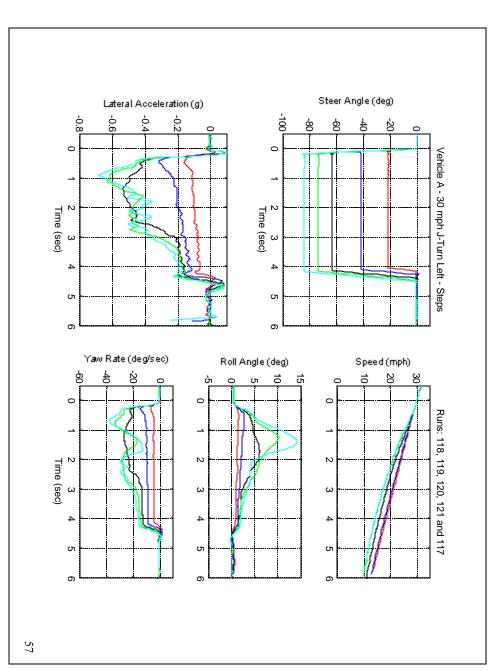
Dropped Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)

- Tests Conducted in both Right and Left Turn Directions
- For the dropped throttle J-turn tests, the test driver drove each vehicle along a straight-line path at a speed slightly above 30 mph. He then dropped the throttle and triggered the ASC to initiate the steering input precisely when the vehicle speed reached 30 mph. The speed of 30 mph was used because it was believed that at this speed all of the vehicles tested, in both loading configurations, would result in a tip-up condition given high enough steering magnitudes. This was the case for all of the vehicles tested.
- The steering rate used for all of the J-turn tests was 500 deg/sec.

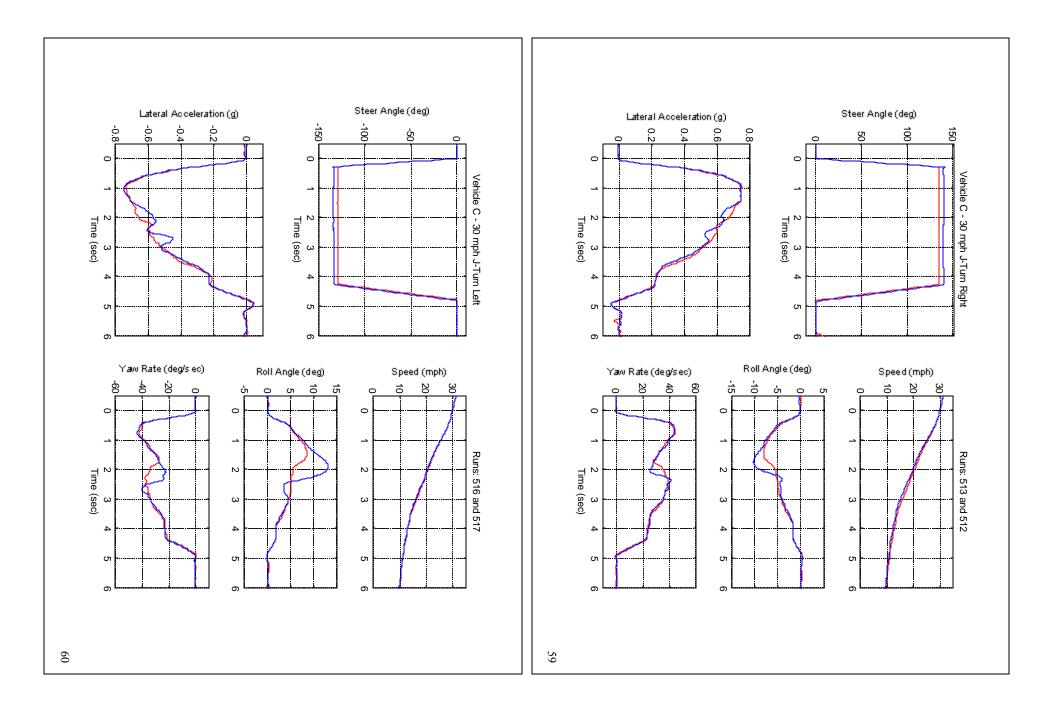

51

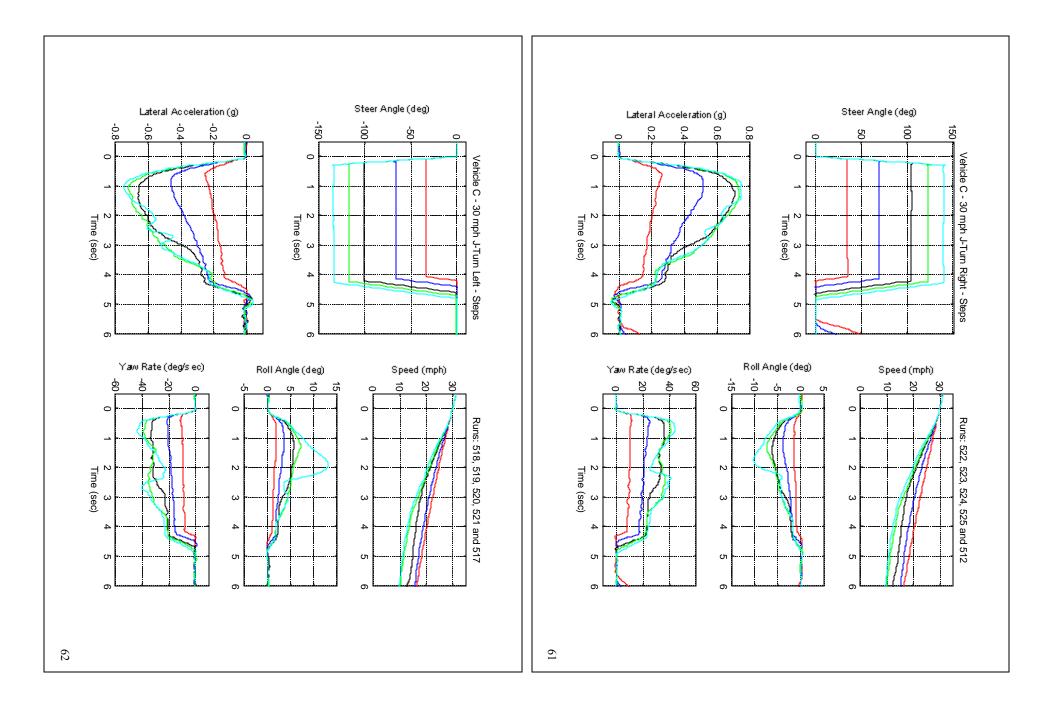
Dropped Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)


• The magnitudes of the steering inputs were varied to identify the minimum steering magnitude required to result in tip-up in the 30 mph dropped throttle tests. For this testing, tip-up events are considered those that produced significant two-wheel lift and in almost all cases outrigger contact. These tests provided a measure of the minimum lateral accelerations and minimum steering wheel angles required to cause two-wheel lifts during the tests.

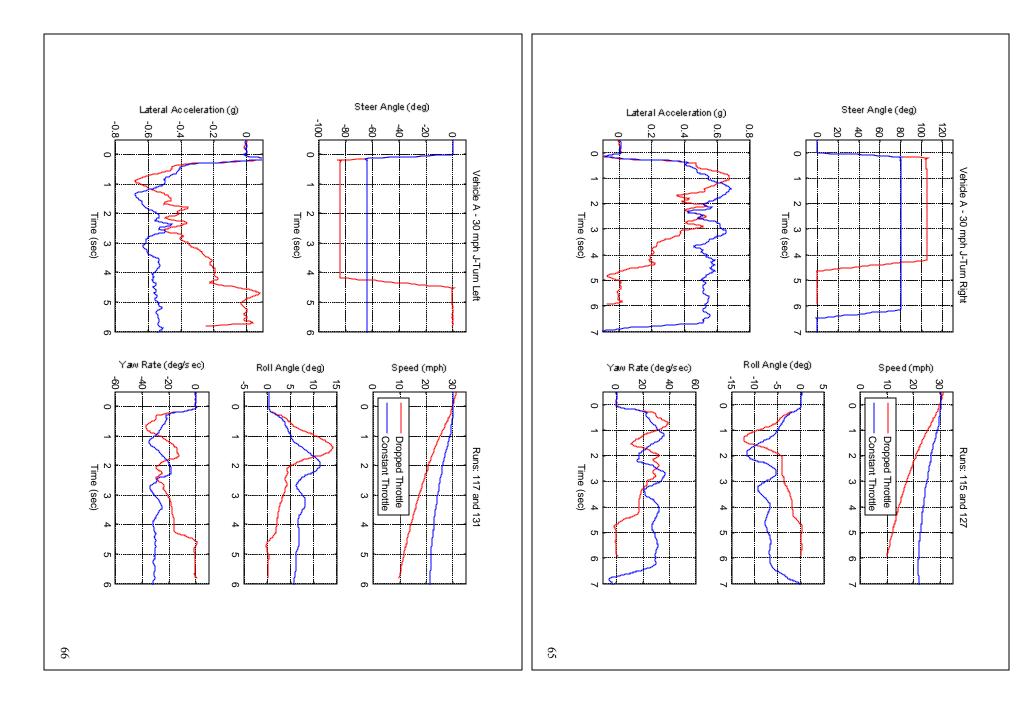

Dropped Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)

- steering magnitudes. vehicle understeer/oversteer behavior. if lateral acceleration to steering input gains could be related to responses in J-turns at various maneuver severities, and to evaluate steering magnitudes magnitudes of 25%, 50%, 75%, and 87.5% of the tip-up producing additional dropped throttle tests were conducted, using steering After identifying the minimum steering wheel magnitudes required for tip-ups in the dropped throttle J-turn tests, a were conducted to evaluate the vehicles? These additional tests using steps in the series of four
- in Appendix F of the S-E-A reports. Detailed results from the dropped throttle J-turn tests are contained



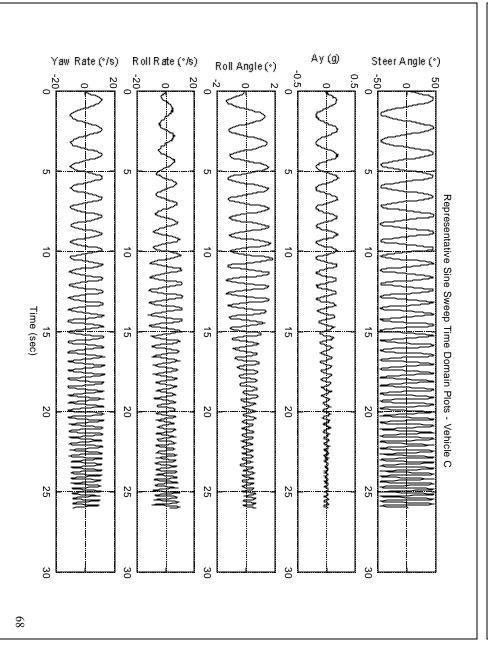

53

Maximum Lateral Accelerations During Dropped Throttle J-Turns Vehicle A – Operator and Passenger Loading	Lateral Accelerations During Dropped Throttl Vehicle A – Operator and Passenger Loading	elerations Operator	During Dr	opped Th nger Load	rottle J-Tu ding	rns
	Right Steer Maneuvers	Steer	Left Steer Maneuvers	steer Jvers	Average of Right and Left Maneuvers	ge of nd Left wers
Percentage of Steering Required for	Steering Angle	Lateral Accel.	Steering Angle	Lateral Accel.	Steering Angle	Lateral Accel.
I wo Wheel Lift (%)	(deg)	(g)	(deg)	(g)	(deg)	(9)
0.0	0.0	0.00	0.0	0.00	0.0	0.000
25.0	26.3	0.17	-21.3	-0.16	23.8	0.165
50.0	52.5	0.32	-42.5	-0.31	47.5	0.315
75.0	78.8	0.44	-63.8	-0.53	71.3	0.485
87.5	91.9	0.61	-74.4	-0.63	83.1	0.620
100.0	105.0	0.67	-85.0	-0.67	0.56	0.670

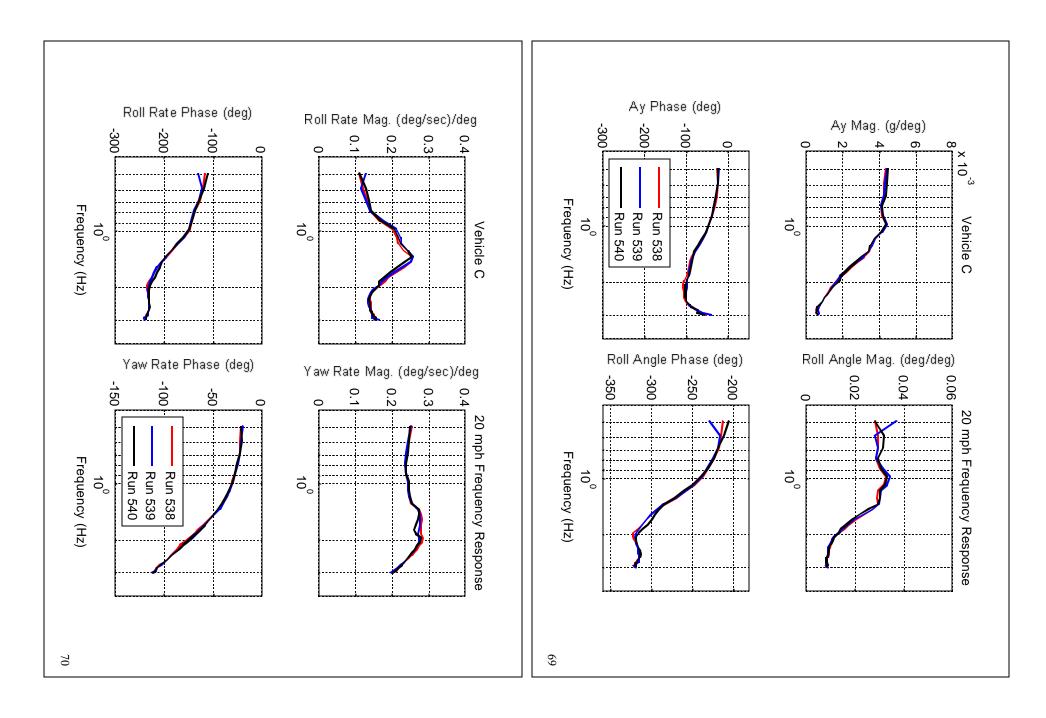

Maximum Lateral Accelerations During Dropped Throttle J-Turns Vehicle C – Operator and Passenger Loading

	Right Mane		Left S Mane		Avera Right a Mane	nd Left
Percentage of Steering Required for Two Wheel Lift (%)	Steering Angle (deg)	Lateral Accel. (g)	Steering Angle (deg)	Lateral Accel. (g)	Steering Angle (deg)	Lateral Accel. (g)
0.0	0.0	0.00	0.0	0.00	0.0	0.000
25.0	35.0	0.25	-33.8	-0.25	34.4	0.250
50.0	70.0	0.51	-67.5	-0.46	68.8	0.485
75.0	105.0	0.70	-101.3	-0.66	103.1	0.680
87.5	122.5	0.73	-118.1	-0.72	120.3	0.725
100.0	140.0	0.74	-135.0	-0.74	137.5	0.740

53

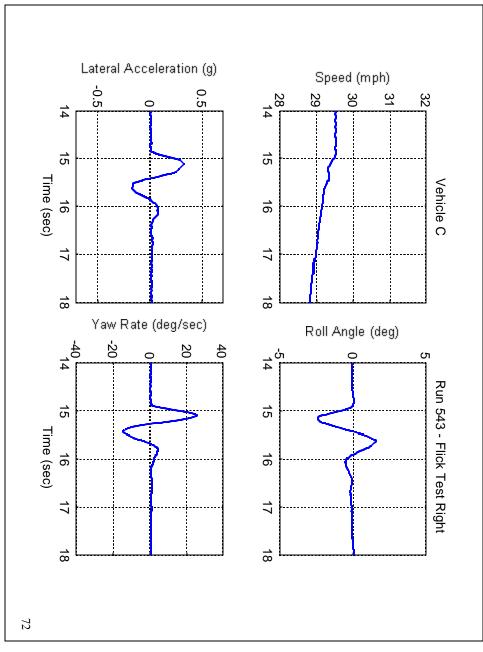

Constant Throttle J-Turn (Step Steer) Tests (Initial Speed of 30 mph)

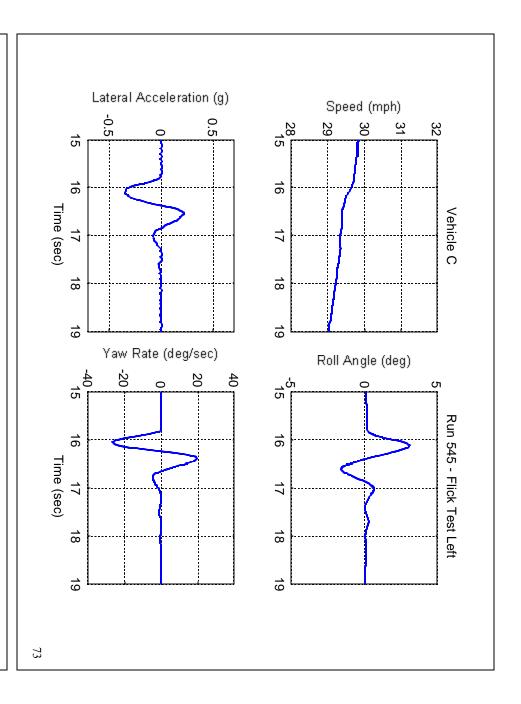
- Tests Conducted in both Right and Left Turn Directions
- For the constant throttle J-turn tests, the test driver drove each vehicle along a straight-line path at a nominal speed of 30 mph. While holding the throttle (gas pedal) constant, he triggered the ASC to initiate the steering input. The steering rates used for the constant throttle J-turn tests were 500 deg/sec. The magnitudes of the steering inputs were varied to identify the minimum steering magnitude required to result in tip-up.
- Detailed results from the constant throttle J-turn tests are contained in Appendix F of the S-E-A reports.



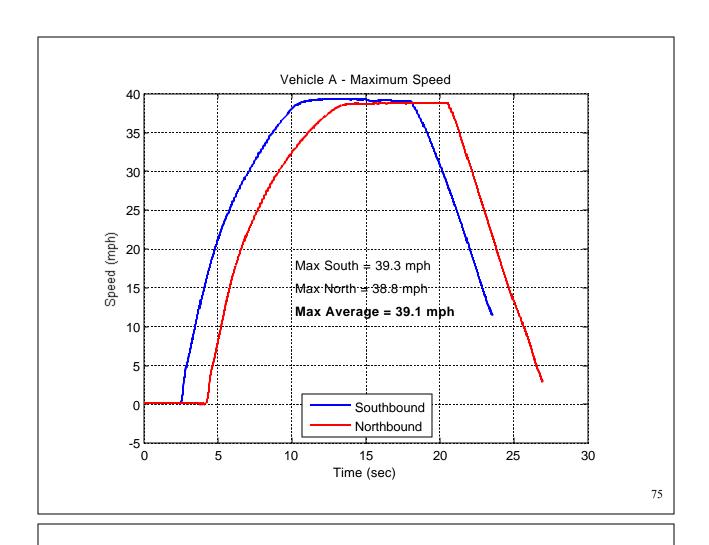
Sinusoidal Sweep Steering (Frequency Response) Tests (20 mph)

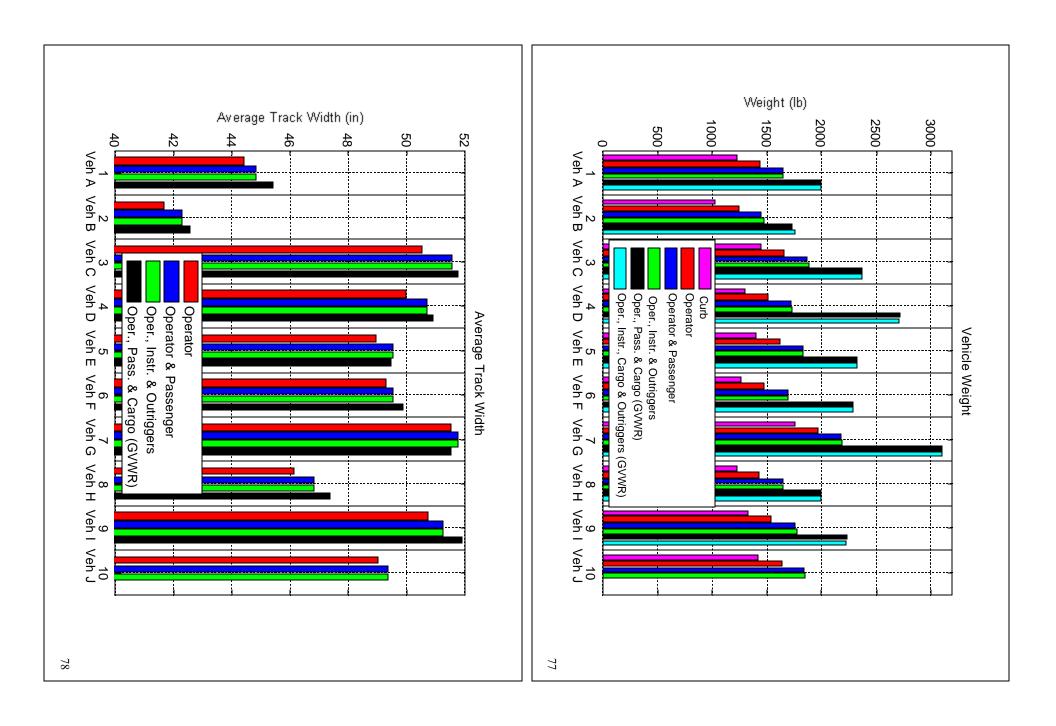
- Nominal constant speed of 20 mph
- amplitudes between 35° and 50° were used for these tests) to generate nominally 0.1-0.3 g of lateral acceleration (steering Steering in a sinusoidal manner with steering amplitude necessary
- course of 40 cycles Steering input frequencies swept from 0.5 to 3.5 Hz over the
- vehicles' responses. issues that might result from exciting a resonant frequency in the The sinusoidal sweep steering tests were done to investigate any
- contained in Appendix G of the S-E-A reports Detailed results from the sinusoidal sweep steering tests are

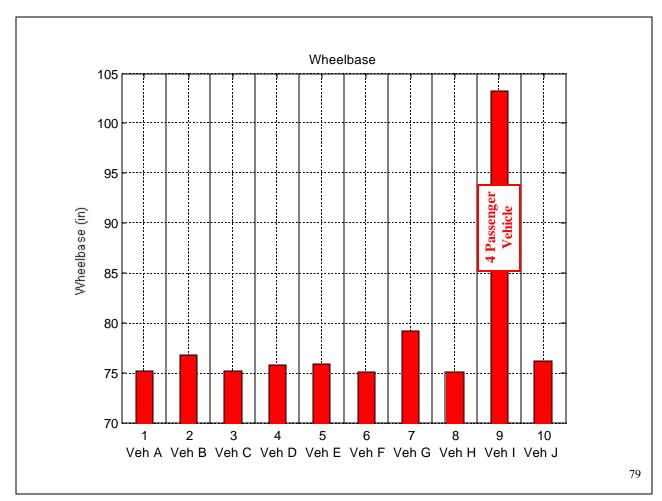


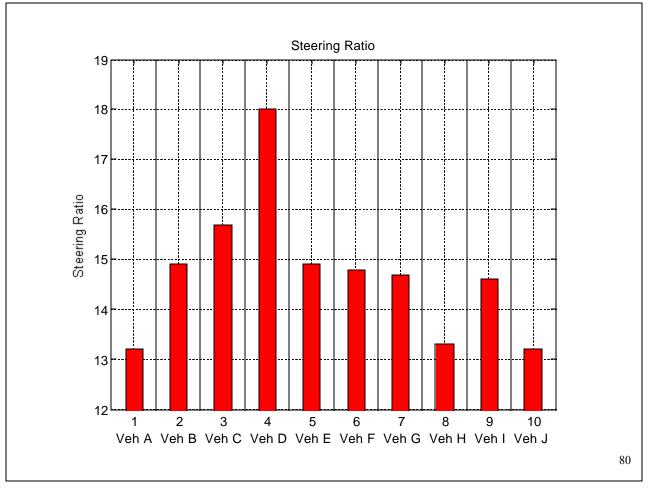

67

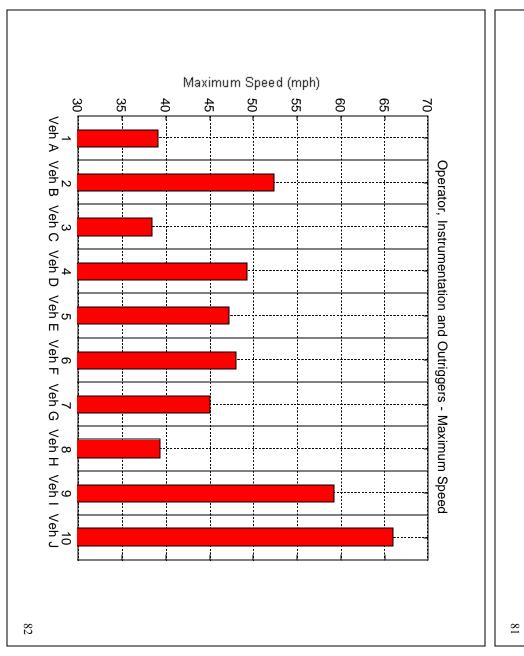
Constant Speed (30 mph) Steering Flick Tests

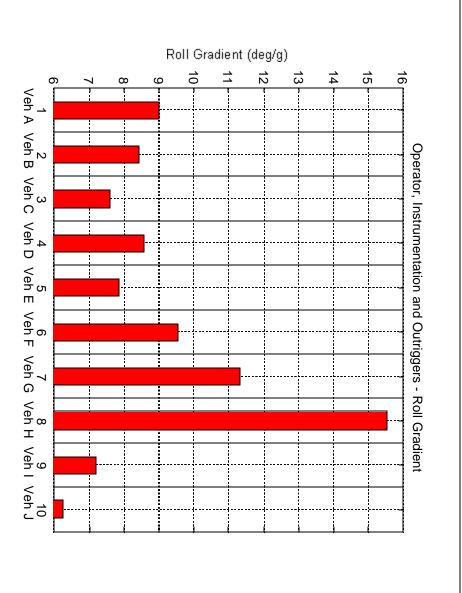

- Nominal constant speed of 30 mph
- Steering in Right and Left Directions
- degrees and letting go of the steering wheel Steering flick tests involve driving the vehicles along a straightline path and quickly 'flicking' the steering wheel to nominally 90
- behavior during a flick test. An unstable The steering flick maneuvers were used to evaluate the stability of vehicles responses to open-loop, free control steering inputs. vehicle may respond with oscillatory or divergent
- too little self aligning position after the steering is released, this could be an indication friction in the steering system Also, if the vehicle responses do not return to a steering moment or possibly close-to-zero too much
- Detailed results from the steering flick tests are contained in Appendix H of the S-E-A reports

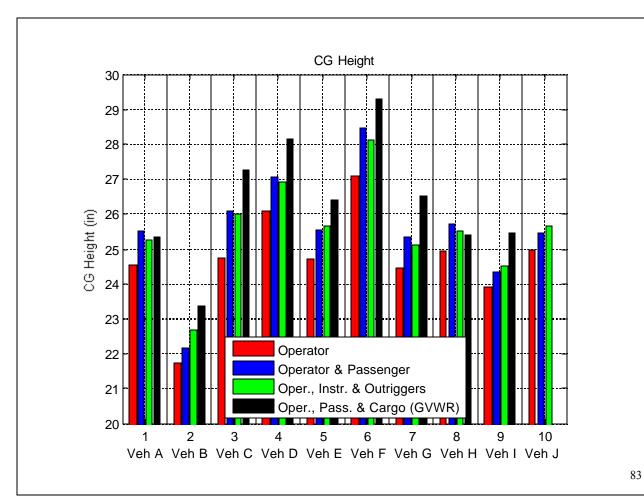


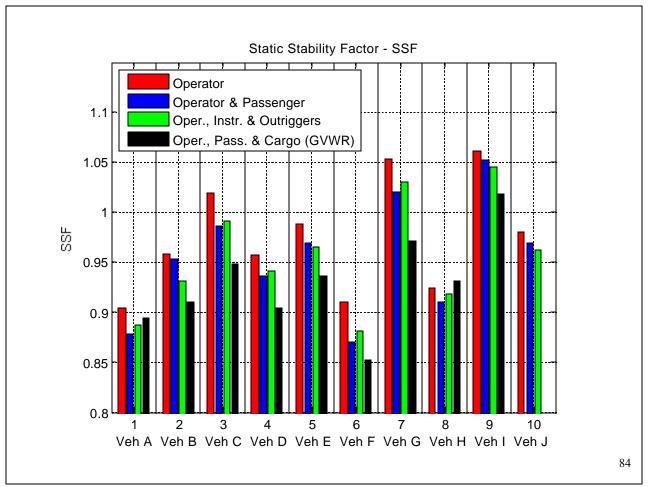

Maximum Speed Tests

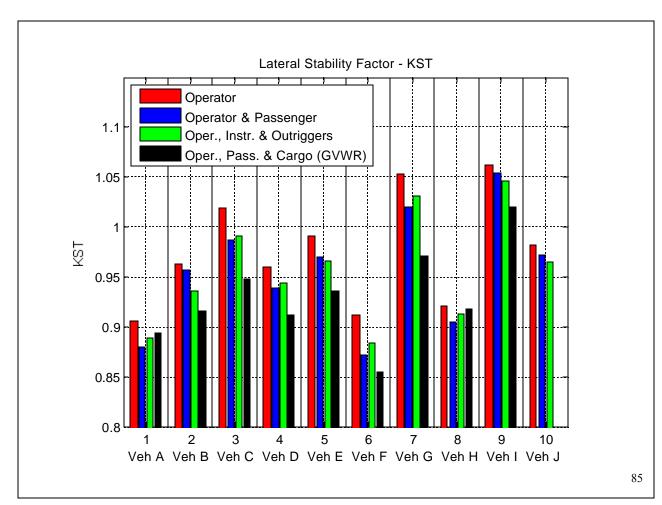

- percent grade (roughly southward). northward) and along the direction down the TRC VDA one along the direction up the TRC VDA one percent grade (roughly speed was reached. Tests were run in two opposite directions along a straight-line path at maximum throttle until maximum For the maximum speed tests, the test driver drove each vehicle
- Appendix I for all vehicles in both loading conditions. Detailed results from the maximum speed tests are contained in

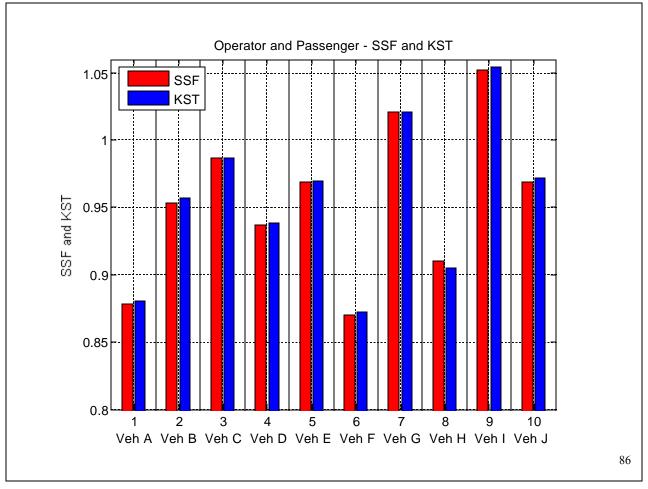


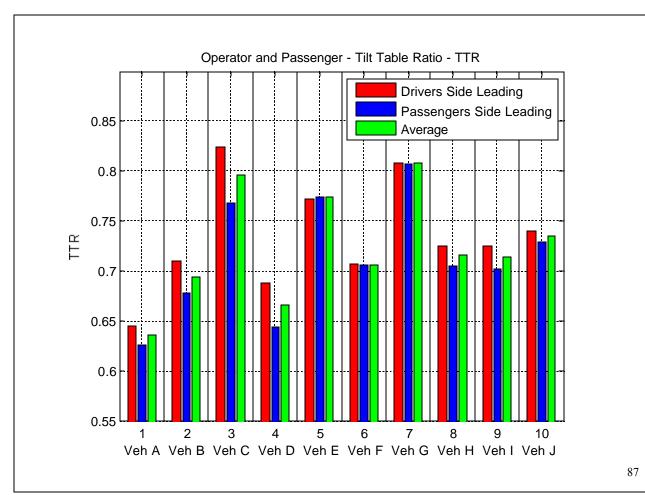

Selection of Summary Results From Appendix B of S-E-A Reports

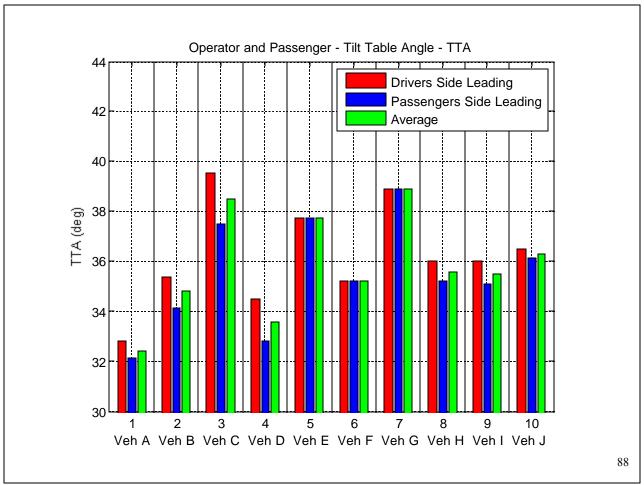


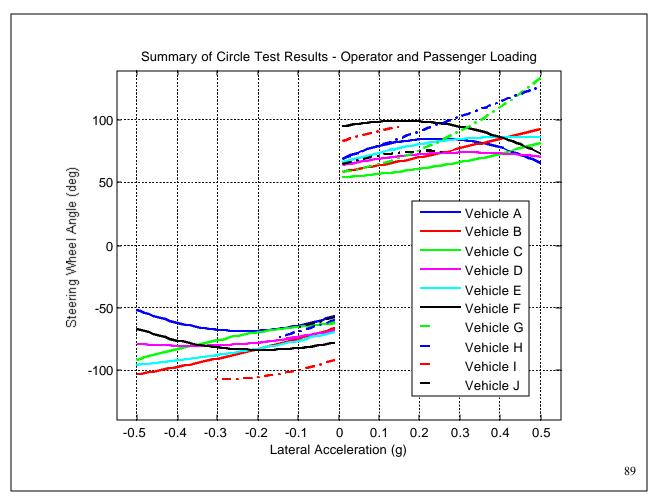


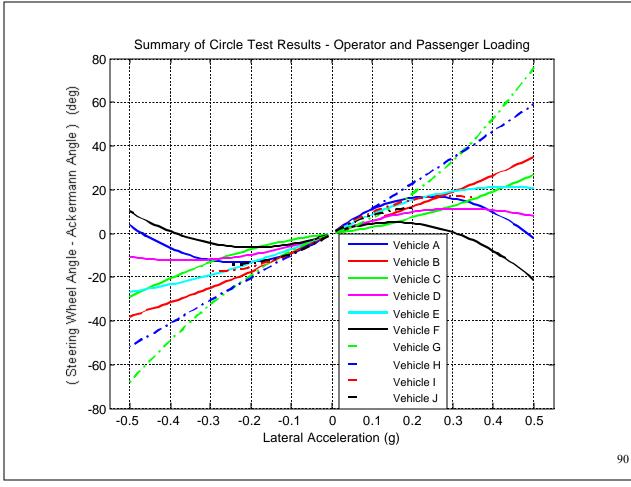


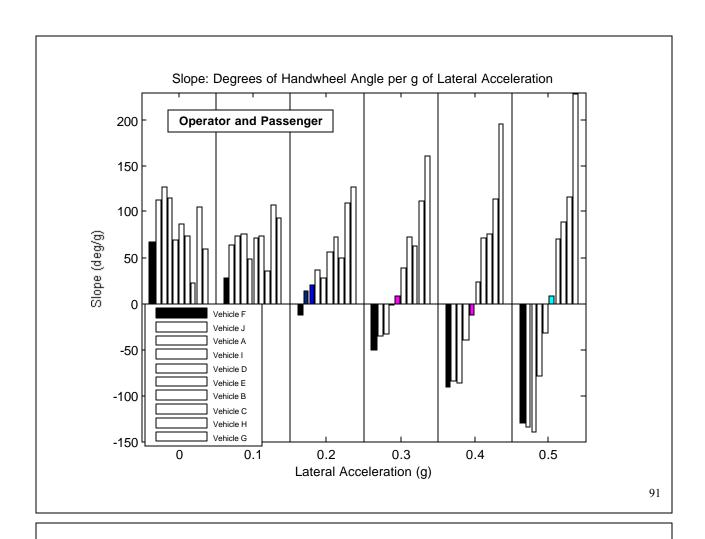












	•	00 ft) Circle Tests	<u> </u>
_		n Level at Point of	
		ersteer to Oversteer	
(Operator and Pas	senger Loading) Counterclockwise	
	Average		
	(g)	(g)	(g)
Vehicle A	0.24	0.23	0.24 OS
Vehicle B	NA	NA	NA
Vehicle C	NA	NA	NA
Vehicle D	0.32	0.37	0.35 OS
Vehicle E	0.44	NA	NA
Vehicle F	0.15	0.19	0.17 OS
Vehicle G	NA	NA	NA
Vehicle H	NA	NA	NA
Vehicle I	0.29	0.30	0.30 OS
Vehicle J	0.22	0.24	0.23 OS

Constant Sp	eed (30 mph) Slow	vly Increasing Sto	eer Tests
	ateral Acceleration 1		
Tra	ansition from Unders	steer to Oversteer	
	(Operator and Passe	enger Loading)	
	Right Turn	Left Turn	Average
	(g)	(g)	(g)
Vehicle A	0.40	0.33	0.37
Vehicle B	NA	NA	NA
Vehicle C	NA	NA	NA
"			

0.44

NA

0.42

NA

NA

0.46

0.40

0.35

NA

0.39

NA

NA

0.43

0.34

Vehicle D

Vehicle E

Vehicle F

Vehicle G

Vehicle H

Vehicle I

Vehicle J

93

OS

OS

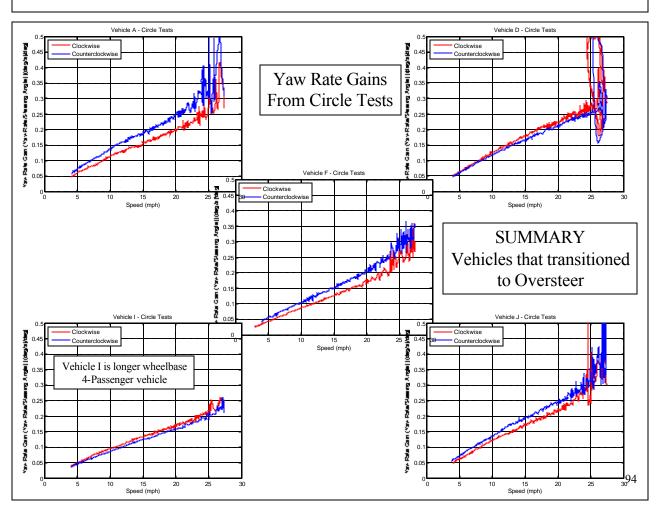
OS

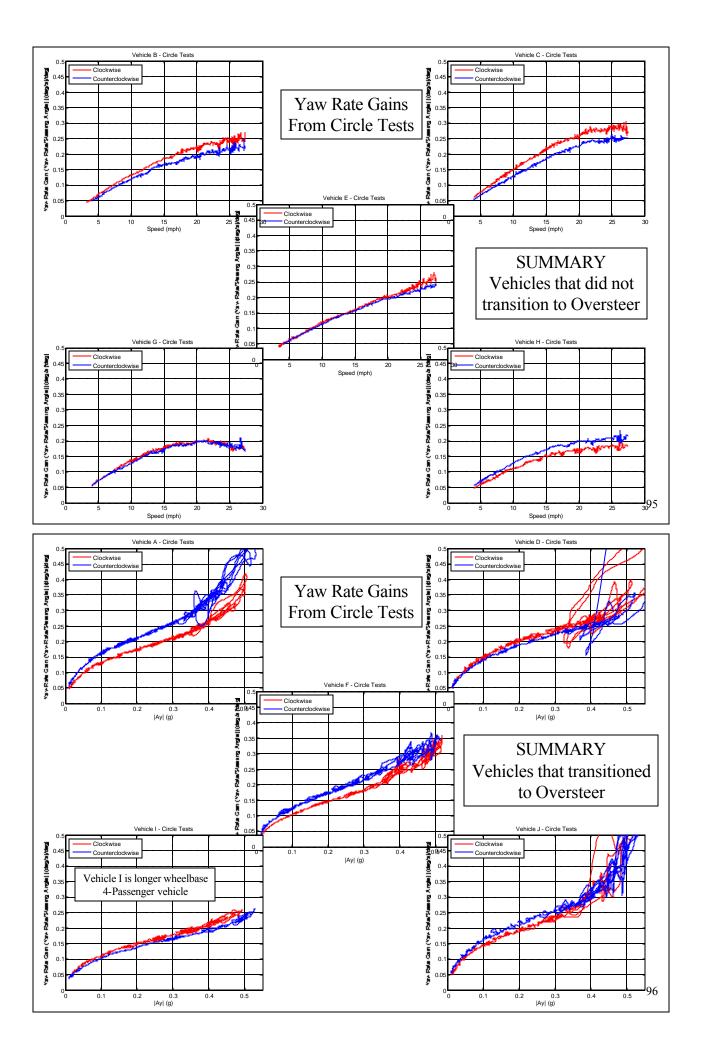
OS

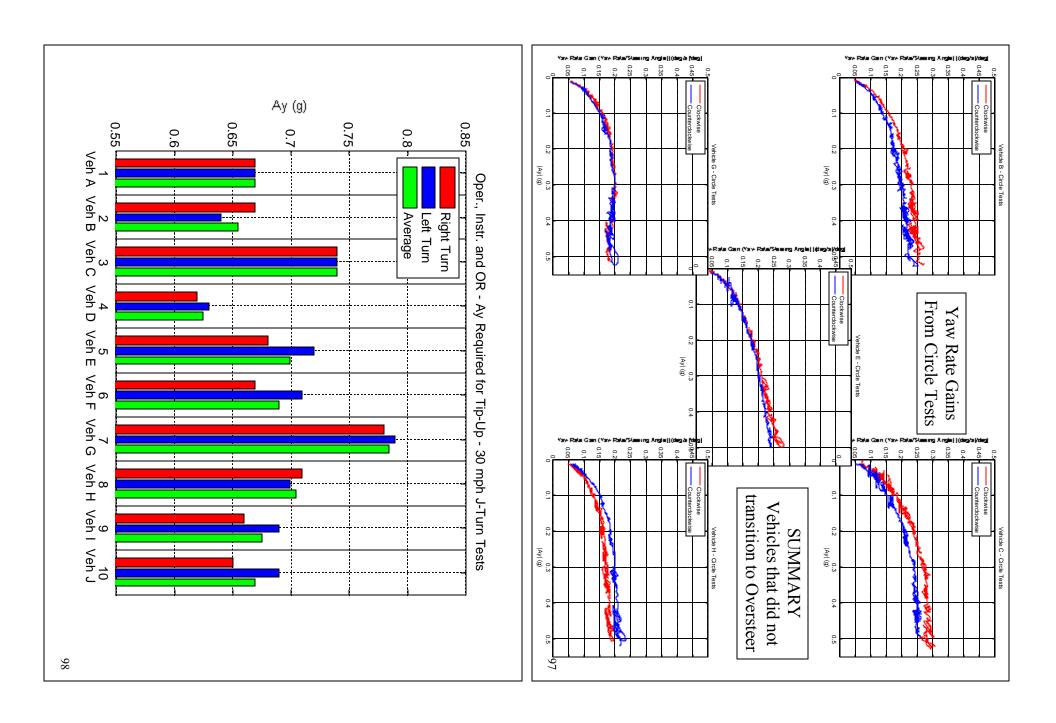
OS

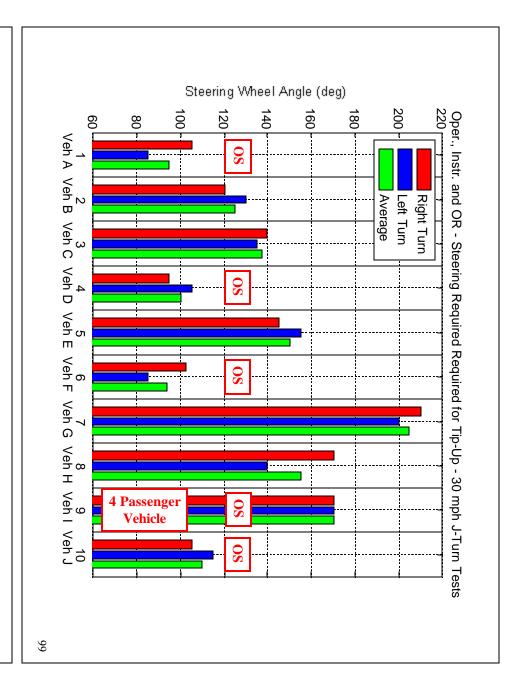
0.40

NA


0.41


NA

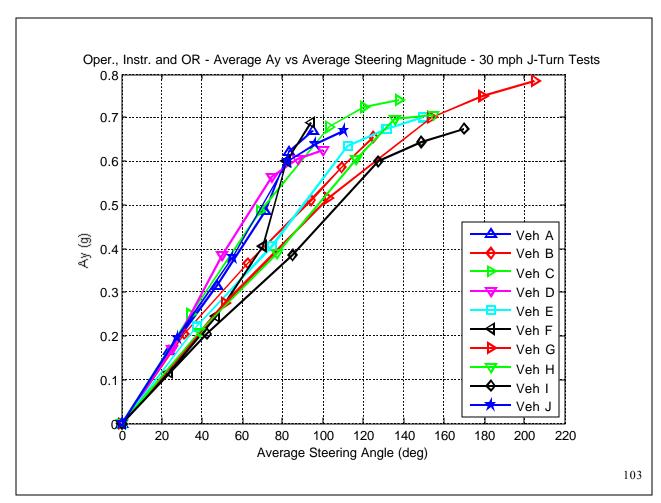

NA

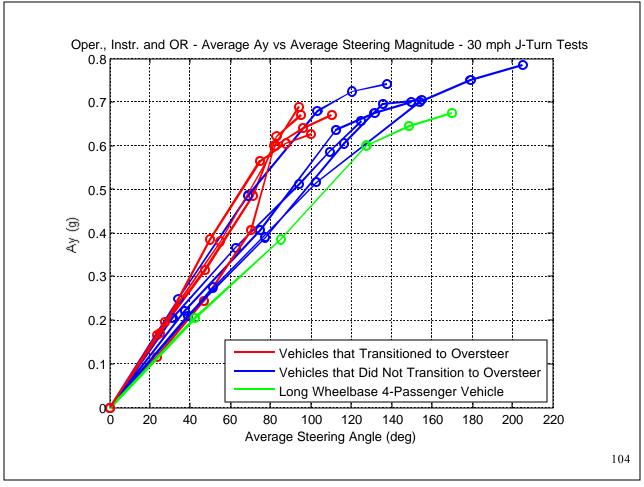

0.45

0.36

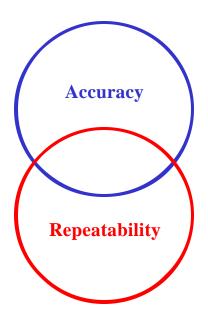

in 30	mph J-Turn (Operator	nmary of Ay and Steering Required for Tip ph J-Turns and Static Rollover Resistance (Operator, Instrumentation and Outriggers)	Rollover R	Summary of Ay and Steering Required for Tip-Up in 30 mph J-Turns and Static Rollover Resistance Metrics (Operator, Instrumentation and Outriggers)	letrics
	Ay	Steering	SSF	CSV/10	TTR
verlicie	at 11p-0p (g)	aι πρ-υρ (deg)	()	(mph/10)	()
Α	0.670	95.0	0.887	0.747	0.650
В	0.655	125.0	0.932	0.756	0.664
С	0.740	137.5	0.991	0.867	0.803
D	0.625	100.0	0.942	0.823	0.667
П	0.700	150.0	0.965	0.821	0.784
F	0.690	93.8	0.881	0.769	0.739
G	0.785	205.0	1.031	0.869	0.810
エ	0.705	155.0	0.918	0.782	0.724
_	0.675	170.0	1.045	0.900	0.712
J	0.670	110.0	0.962	0.821	0.730

for Tip-Up in J-Turns and Static Rollover Resistance Metrics (Operator, Instrumentation and Outriggers)	Vehicle Ascending Rank Order of Ay and Steering Required
---	--


Vehicles A D F I	G	С	Н	Е	F	ı	J	А	В	D	(g)	Ay Tip-I In	
and .I exhibited tran	G	l	Н	E	С	В	J	D	А	F	(deg)	Steering	
sient from Underste		G	С	Э	ſ	D	В	Н	А	F	()	SSF	
er to Oversteer in C		G	С	D	J	Е	Н	F	В	А	(mph/10)	CSV/10	
Vehicles A. D. F. I and J. exhibited transient from Understeer to Oversteer in Circle and SIS Tests	G	С	Ш	F	J	エ		D	В	А	()	TTR	


Vehicles A, D, F, I and J exhibited transient from Understeer to Oversteer in Circle and SIS Tests

Vehicle I is the 4-Passenger Vehicle



101

Comments Regarding Accuracy and Repeatability In Laboratory and Dynamic Tests

- A measurement can be very repeatable and not accurate
- Adherence to exacting test methodologies is needed to have accurate tests
- Adherence to exacting test methodologies is needed to have repeatable tests
- Test-to-test and lab-to-lab variability can have an influence on perceived accuracy and repeatability

105

Comments Regarding Accuracy and Repeatability In Dynamic Tests

- Adherence to exacting test methodologies is needed to have accurate tests
 - Properly calibrated transducers (sensors)
 - Properly mounted transducers (e.g. making measurements at the vehicles' CG locations)
 - Proper data collection and post-processing
 - Data quality checks of sensor data
- Adherence to exacting test methodologies is needed to have repeatable tests
 - Efforts to minimize test-to-test variation
 - Control over test inputs (e.g. steering robot, speed control, etc.)
 - Control over test condition (e.g. surface conditions, wind, etc.)
 - Control of vehicle conditions (e.g. secure loading, tires, fuel, etc.)

<u>Comments Regarding S-E-A's</u> Lateral Acceleration Measurements:

- S-E-A's sensor measurements of ground plane lateral acceleration are accurate to \pm 0.001 g. S-E-A's data indicates that the overall accuracy of selecting a peak Ay value for any given run is \pm 0.01 g.
- S-E-A's data indicates that the repeatability of their measurements of ground plane lateral acceleration made during their dropped-throttle J-turn tests is \pm 0.02 g.
- The differences between ground plane lateral acceleration in the tests with maximum steering that did not produce two-wheel lift and tests with minimum steering to produce two-wheel lift are generally within 0.01 to 0.03 g.

107

Concluding Comments Regarding Accuracy and Repeatability of S-E-A's Data

S-E-A's laboratory and dynamic test results are both very **accurate** and very **repeatable** – representing the state-of-the-art regarding the measurements made.

S-E-A, Ltd. Review of ROHVA Materials Related to Dropped Throttle J-Turn Tests Presented to CPSC Technical Staff on November 10, 2011 and ROHVA's May 1, 2012 Responses to CPSC Staff Questions dated February 15, 2012

Gary J. Heydinger, Ph.D., P.E. Director Vehicle Dynamics Division

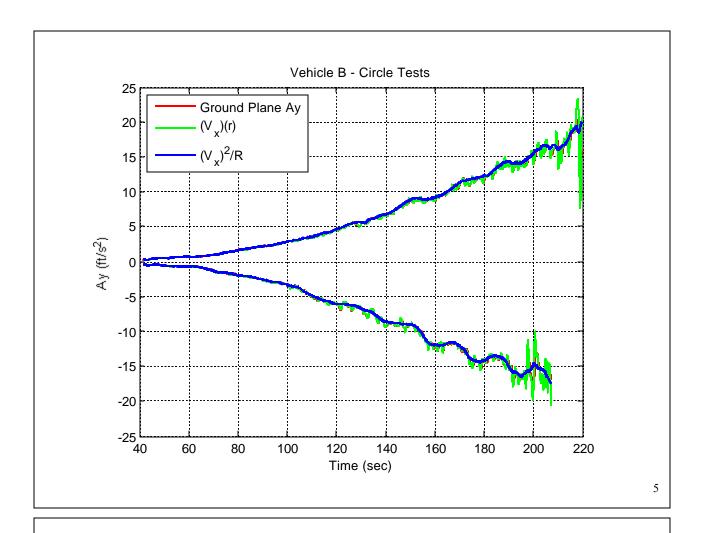
July 19, 2012

The fact that Carr Engineering could not duplicate some of the testing results of S-E-A does not mean that the testing results of S-E-A are inaccurate or unrepeatable.

S-E-A Lateral Acceleration Measurements

- S-E-A used a sensor that provides for a direct measurement of ground plane lateral acceleration (sometimes referred to as Corrected Ay).
- S-E-A's sensor was also configured to provide ground plane lateral acceleration at the measured center of gravity of each vehicle.

3


S-E-A Data Quality Checks

During SAE J266 constant radius circle tests the following fundamental relationships involving ground plane lateral acceleration (Ay), vehicle longitudinal speed (Vx), yaw rate (r), and circle radius (R) hold true:

Ground Plane (Corrected)
$$Ay = V_x \times r = \frac{{V_x}^2}{R}$$

The graph on the following slide contains data measured by S-E-A during the circle tests for Vehicle B in the representative Operator plus Passenger loading condition. The plots indicate that the S-E-A data is consistent with these fundamental relationships.

S-E-A performed similar data quality checks for all vehicles tested for and reported to CPSC, and confirmed that the quality of this data for all vehicles tested was similar to that shown on the following page. The data channels used for ground plane Ay, Vx and r during these tests are the same data channels S-E-A used for all tests, including the dropped throttle J-turn tests.

Carr Engineering Lateral Acceleration Measurements

Using a sensor like the one used by Carr Engineering, the magnitude of the measured lateral acceleration is greater than the magnitude of the ground plane lateral acceleration (Corrected Ay) during a dropped throttle J-turn maneuver.

Correct Equation for Planar Ground Plane (Corrected) Lateral Acceleration

Using a sensor like the one used by Carr Engineering, the ground plane (Corrected) lateral acceleration can be computed from the measured vehicle-body-fixed lateral acceleration and the vehicle-body-fixed vertical acceleration (both of which sense accelerations caused by the maneuver and by gravity). The ground plane (Corrected) lateral acceleration is the acceleration parallel to the road plane, and it is computed as (using SAE vehicle coordinate sign conventions):

Corrected Ay \neq Measured Ay×cos(ϕ) Measured Az×in(ϕ) where ϕ = body roll angle

See derivation on following slide and two references:

Consumer Information; New Car Assessment Program; Rollover Resistance; Final Rule, Federal Register, Part II, Department of Transportation, NHTSA, Pg. 59274, October 14, 2003.

American National Standard for Recreational Off-Highway Vehicles ANSI/ROHVA 1 - 2011, 2011

7

 $a_{y_n} = \text{Measured body - fixed lateral acceleration}$ $a_{z_n} = \text{Measured body - fixed vertical acceleration}$ $a_{y_n} = \text{Corrected (Ground Plane) lateral acceleration}$ $\phi = \text{Body roll angle}$ $a_{y_n} \cos \phi$ $a_{y_n} \cos \phi$ $a_{y_n} \cos \phi - a_{z_n} \sin \phi$ $a_{y_n} = a_{y_n} \cos \phi - a_{z_n} \sin \phi$ RESULTANT VECTOR $a_{y_n} = a_{y_n} \cos \phi - a_{z_n} \sin \phi$

8

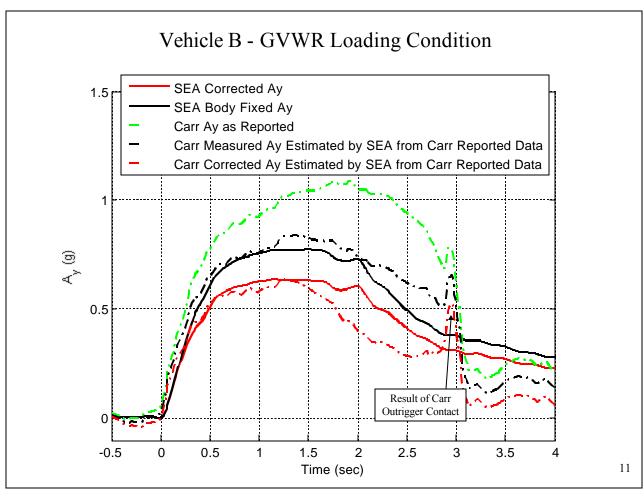
Incorrect Equation used by Carr Engineering For Corrected Lateral Acceleration

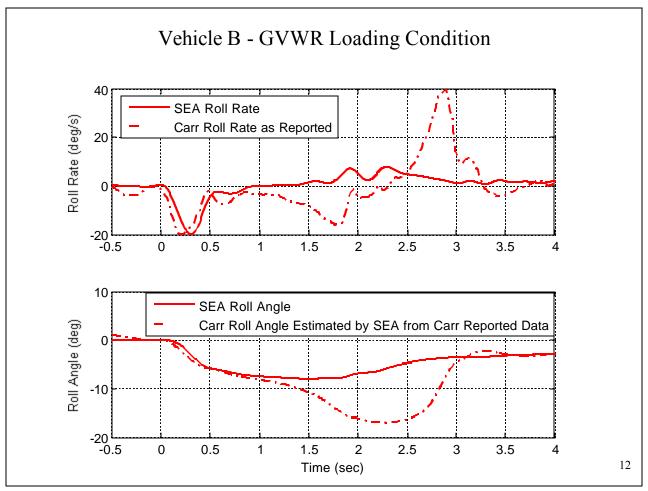
Corrected Ay
$$=$$
 Measured Ay $-\frac{\sin(body \ roll \ angle)}{\cos(body \ roll \ angle)}$

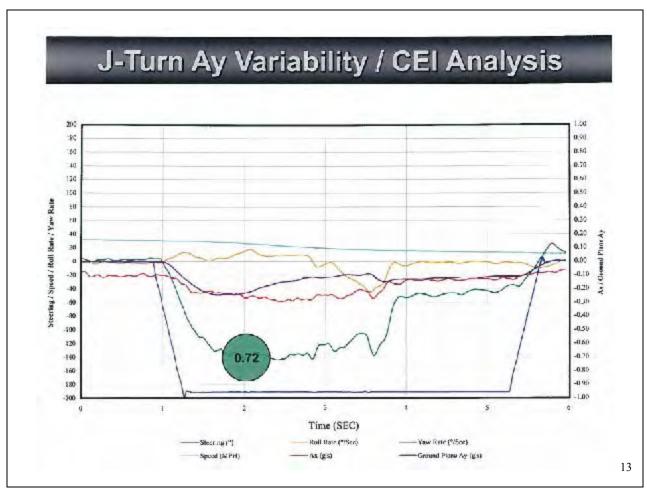
From ROHVA Responses to CPSC Staff Questions, dated February 15, 2012 - Answer to Question 19.

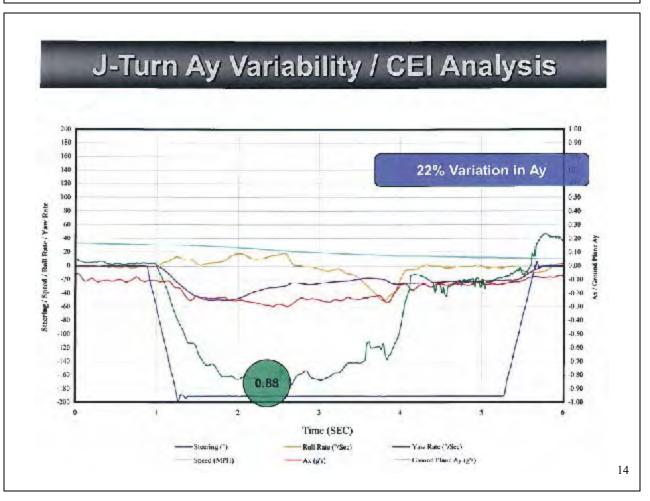
Using a sensor like the one used by Carr Engineering, the ground plane (Corrected) lateral acceleration can be computed from the measured vehicle-body-fixed lateral acceleration and the vehicle-body-fixed vertical acceleration. Using the equation above, Carr Engineering essentially added to the magnitude of the measured Ay, instead of subtracting from the magnitude of the measured Ay. In addition to the major sign error, the equation above also contains trigonometric errors.

9


S-E-A Estimation of Correctly Computed Carr Engineering Ground Plane Lateral Acceleration Given Carr Engineering Reported Data and Equation

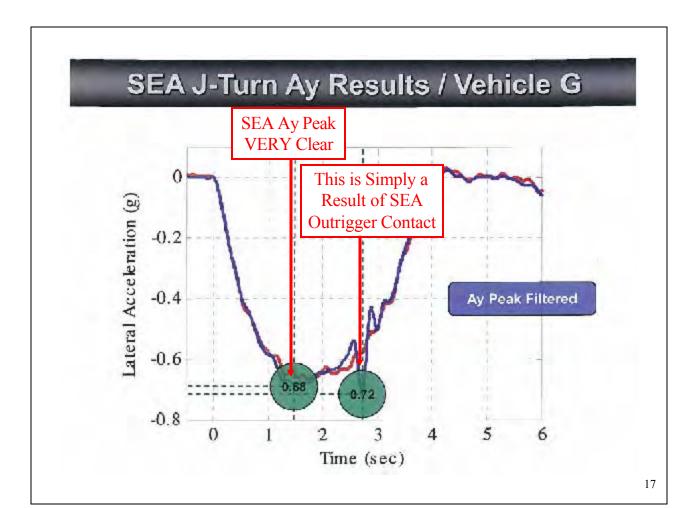

The following two slides contain graphs with data from S-E-A's testing shown using solid lines and data based off of Carr Engineering's reported data shown using dashed lines.


On the next slide, the solid red line shows S-E-A's ground plane lateral acceleration as measured directly by their sensor. This is same data shown in S-E-A's report for Vehicle B in the representative GVWR loading condition. The solid black line is the body-fixed lateral acceleration for the vehicle during S-E-A's test.


The dashed green line is the plot Carr Engineering reported for their ground plane (Corrected) lateral acceleration. Carr Engineering did not report the vehicle roll angle during this test. However, S-E-A estimated the roll angle by integrating the roll rate data presented by Carr Engineering (Slide 12). Using this estimated roll rate, S-E-A was able to estimate the curve for the Carr Engineering measured Ay using Carr Engineering's equation listed on Slide 9. The dashed black line shows the estimated Carr Engineering body-fixed lateral acceleration. Then, using the correct equation for computing ground plane (Corrected) lateral acceleration listed on Slide 7, and assuming that the measured vertical acceleration was equal to -1.0 g, S-E-A estimated the Carr Engineering ground plane (Corrected) lateral acceleration, which is plotted as the dashed red line.

Given the fact that S-E-A based their calculations for the "corrected" Carr Engineering ground plane lateral acceleration (dashed red line) by picking off data points from the hardcopy ROVHA report (and then integrating the hardcopy reported roll rate to get roll angle) and from assuming that the measured vertical acceleration during the Carr Engineering test was -1.0 g, the S-E-A ground plane lateral acceleration (solid red line) and the S-E-A estimated Carr Engineering ground plane lateral acceleration (dashed red line) through the point of two wheel lift match quite well (and the peak Ay values are very close). Certainly the differences are not were nearly as huge as the differences between the solid red line (S-E-A reported ground plane lateral acceleration) and the dashed green line (Carr Engineering ground plane lateral acceleration).

J-Turn Ay Variability


- OPEI calculated vehicle variation of ~19% of data range using SEA results
- CEI measured ~22% Ay test-to-test variation

Lack of adherence to exacting test methodologies and/or improper data collection or data post processing is likely the reason for this variation

15

J-Turn Ay Variability

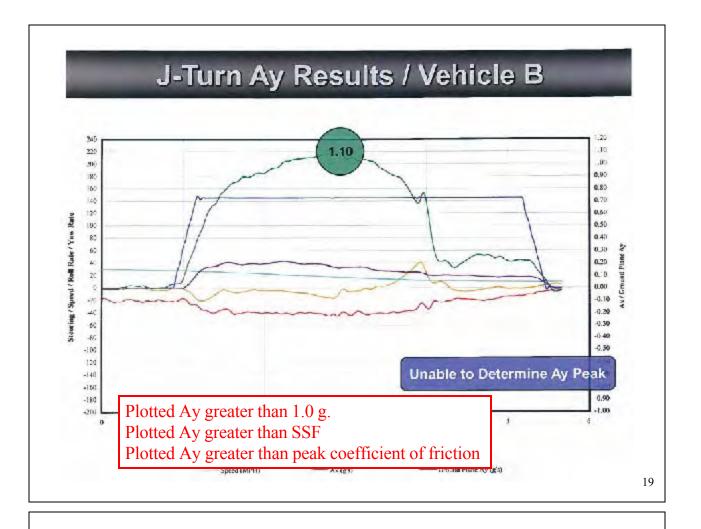
- Inconsistent results based on specific testing conditions and methodology that do not satisfy the CPSC/SEA-stated objective of being both accurate and repeatable
 - S-E-A had no such inconsistent results
- Inappropriate for use as a standard or metric due to large test-to-test variability

J-Turn Ay Measurement

 Results generated by CEI (using SEA methodology) show a wider range of rolling motions

Why (if same steering and same speed)?

 Some vehicles displayed rolling motions which prevented an accurate or reliable measurement of Ay


Measurement of Ay or Calculation of Ay?

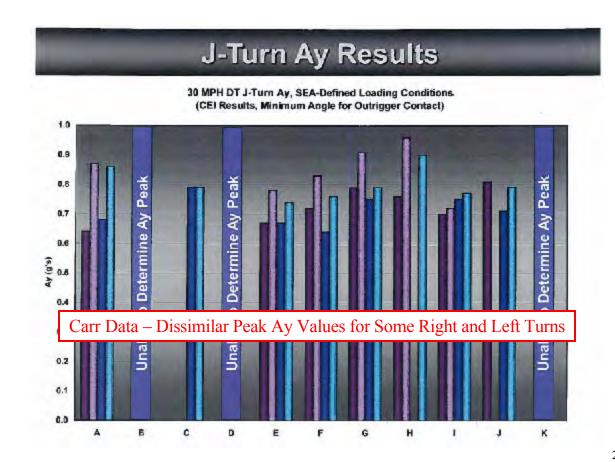
 Ay selected by CEI as local maximum excluding transients generated

This was not an issue using the S-E-A data.

 Like SEA, unknown / unquantified effect of outrigger contact during generation of local maximum

NO. This was not an issue using the S-E-A data.


Carr Engineering Reports: Unable to Determine Ay Peak


It is generally ALWAYS possible to determine Peak Ay from vehicle response data from dropped throttle J-turn tests.

S-E-A's Reports have corrected lateral acceleration plots for over 200 dropped throttle J-Turn tests. Some of these tests resulted in two-wheel lift and outrigger contact, and some did not.

For every single one of these tests, S-E-A was able to determine a peak Ay.

Carr Engineering's lack of adherence to exacting test methodologies and/or errors in processing their data is likely the cause of their inability to determine Ay peaks.

For all vehicles, all of the left turn and right turn average values for Ay peak reported by Carr Engineering are larger than those determined by S-E-A.

Carr Engineering's lack of adherence to exacting test methodologies and/or errors in processing their data is likely the reason their reported Ay peak values are higher than those determined by S-E-A.

For several vehicles, Carr Engineering reported Ay peak values in left J-turns that significantly differ from those they reported in right J-turns.

S-E-A found no such large left-to-right variation in any of the vehicles they tested. It is likely that the differences reported by Carr Engineering are likely a result of their lack of adherence to exacting test methodologies and/or errors in processing their data.

23

Test Surface Condition Variations Can Contribute to Variations In SWA Results

S-E-A Testing Conducted on the asphalt Vehicle Dynamics Area (VDA) at the Transportation Research Center (TRC), with the following measured surface properties:

Table 1: TRC Skid Number Measurements					
Location	VDA				
Pad#	V-5, dry				
Pavement	Asphalt				
Surface	Untreated				
Condition	Dry				
Date	Peak PBC	Slide SN			
5/5/2010	92.5	82.2			
6/1/2010	98.1	84.7			
6/21/2010	92.3	85.0			
7/5/2010	95.7	83.2			
7/19/2010	97.0	82.8			
8/2/2010	98.2	84.9			
8/23/2010	93.3	83.5			
9/7/2010	96.6	86.5			
9/27/2010	94.6	86.3			
5/11/2011	92.7	85.0			

9

Carr Engineering Testing Conducted

on the a concrete surface with

unreported (or unknown) surface properties.

Slope = 1.0%

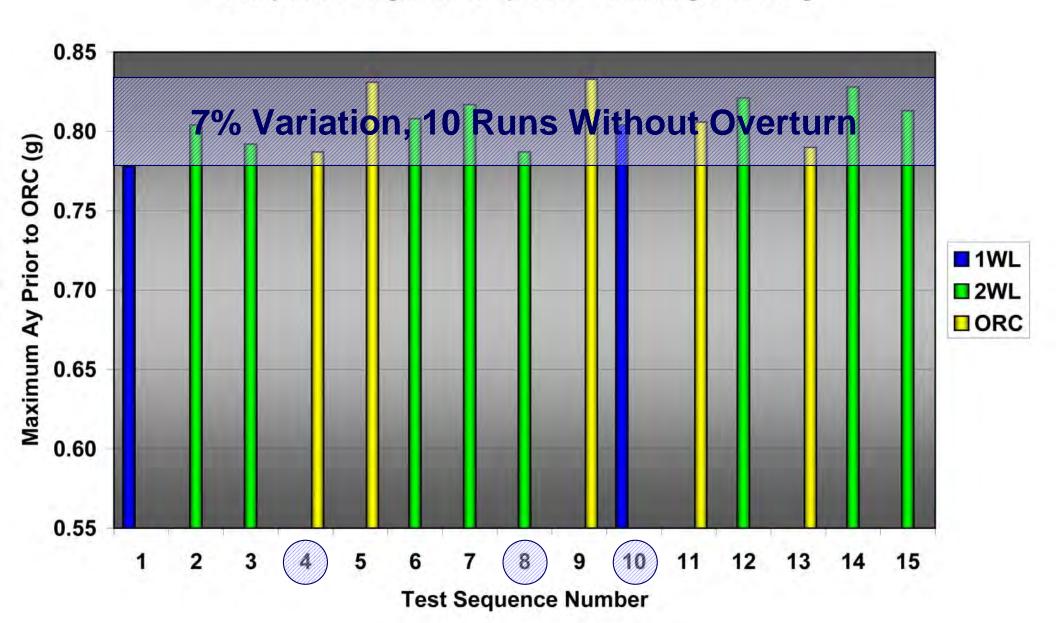
Slope = ?

24

Concluding Comments Regarding Accuracy and Repeatability of Carr Engineering's Dropped-Throttle J-Turn Data

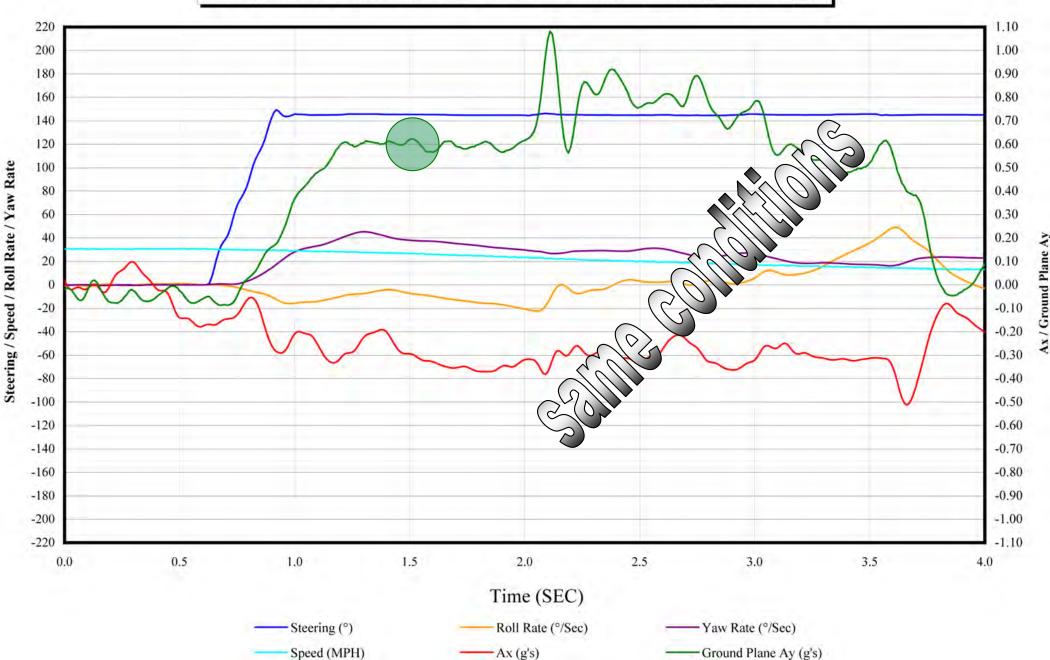
Carr Engineering's dropped-throttle J-turn test results did not demonstrate that S-E-A's dropped-throttle J-turn test results are either **inaccurate** or **unrepeatable**

25

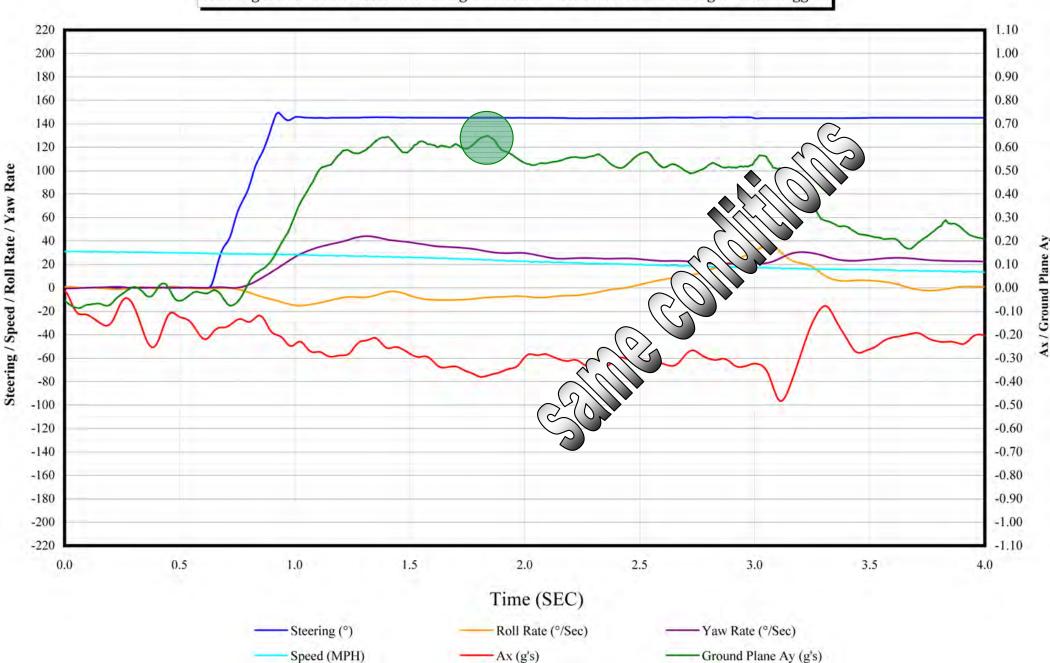

ROHVA / CPSC Technical Discussion

July 19, 2012 Carr Engineering, Inc.

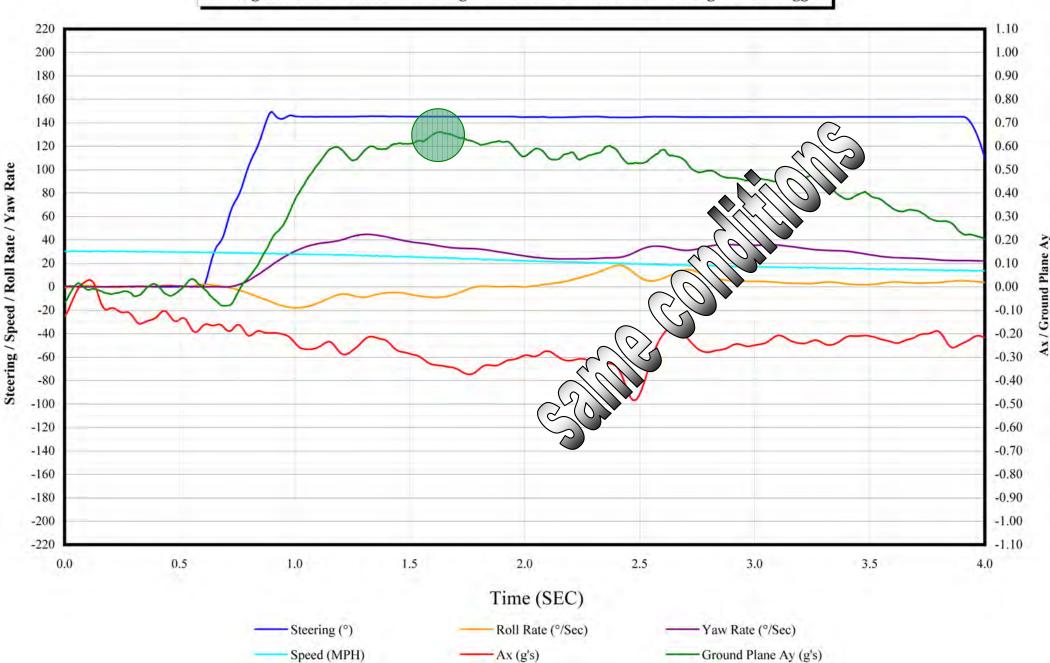
Single-Vehicle J-Turn Repeatability Study


Vehicle E

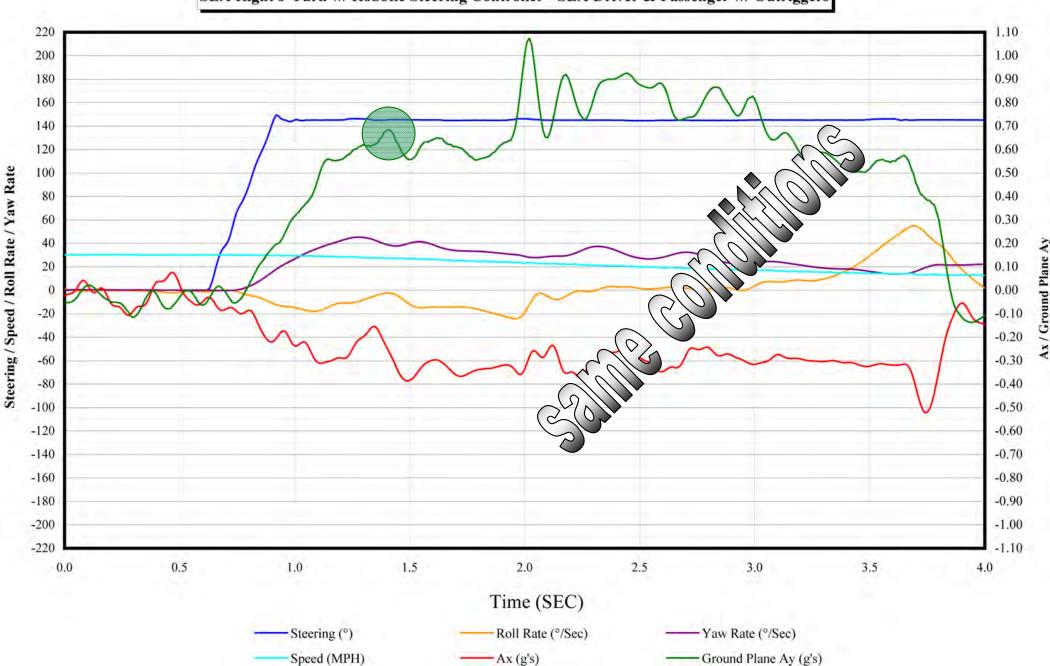
Single-Vehicle J-Turn Repeatability Testing Results (Left 174°) 30 mph / 500 deg/s / SEA Operator + Passenger Loading


0.623 g w/ Outrigger Contact

TEST 110: Vehicle E SEA Right J-Turn w/ Robotic Steering Controller - SEA Driver & Passenger w/ Outriggers

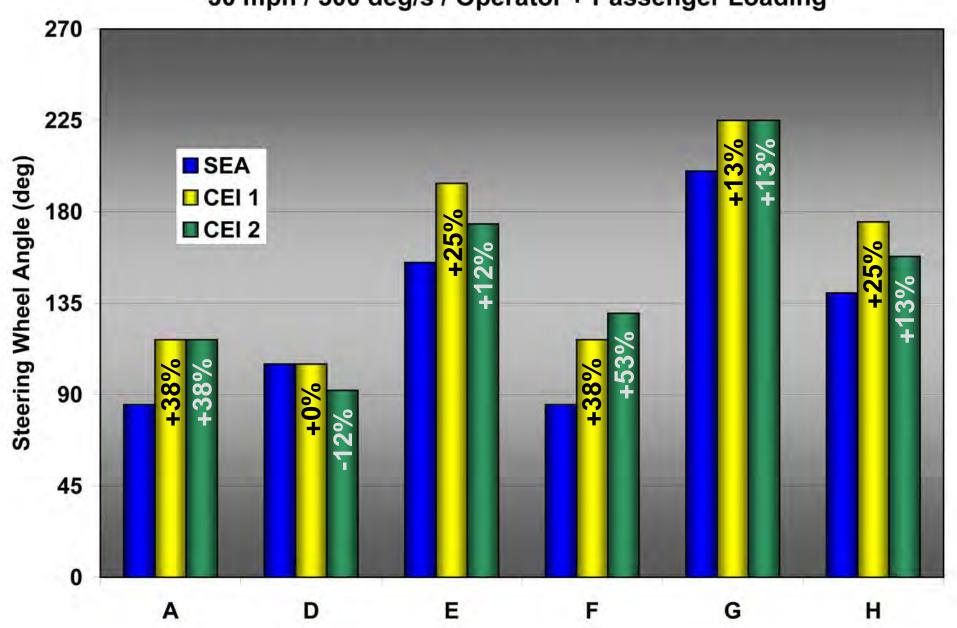

0.649 g w/ Two-Wheel Lift

TEST 111: Vehicle E SEA Right J-Turn w/ Robotic Steering Controller - SEA Driver & Passenger w/ Outriggers

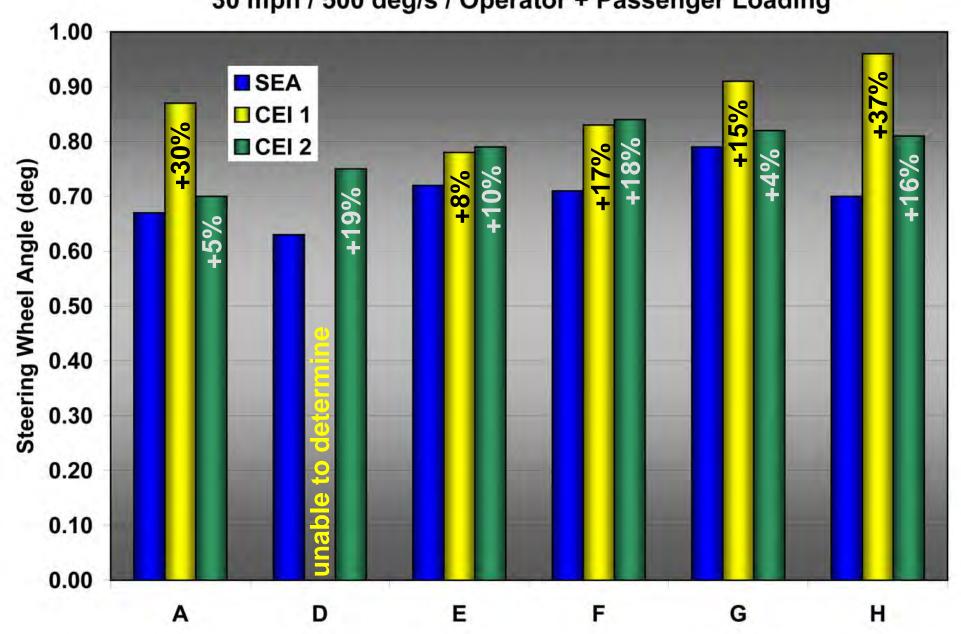

0.660 g w/ One-Wheel Lift

TEST 116: Vehicle E SEA Right J-Turn w/ Robotic Steering Controller - SEA Driver & Passenger w/ Outriggers

0.685 g w/ Outrigger Contact


TEST 117: Vehicle E SEA Right J-Turn w/ Robotic Steering Controller - SEA Driver & Passenger w/ Outriggers

Multi-Vehicle J-Turn Repeatability Study

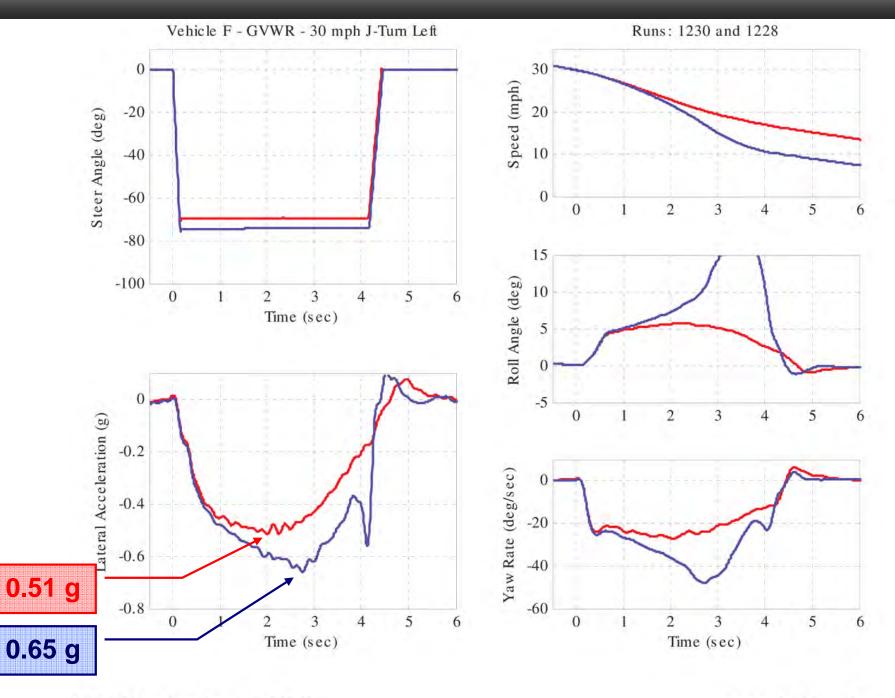

SWA Results and Analysis

Steering Wheel Angle for Two Wheel Lift (Left) 30 mph / 500 deg/s / Operator + Passenger Loading

Ay Results and Analysis

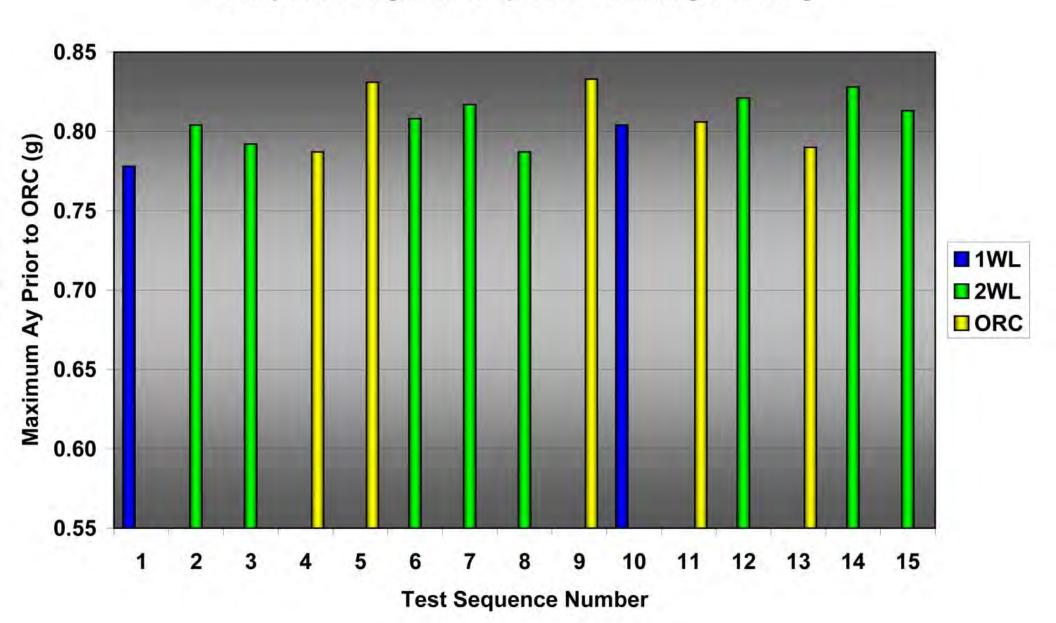
Minimum Ay for Two Wheel Lift (Left)
30 mph / 500 deg/s / Operator + Passenger Loading

CPSC Responses to ROHVA Questions


ROHVA Question 4

• Q: A review of the dropped throttle J-turn testing for which results are presented in Appendix E of both the April and August 2011 SEA Reports indicates that data from several tests may not have been included in the original Reports. In addition to the runs numbered 116 and 117, 1128 and 1129, and 1326 and 1328, were there any other tests performed where a vehicle (or vehicles) in the operator and passenger loading configuration showed an Ay variability of 0.03 g or greater between runs when tested in the same direction? If so, please list the machine(s) by identifying letter and provide the test results for all such runs.

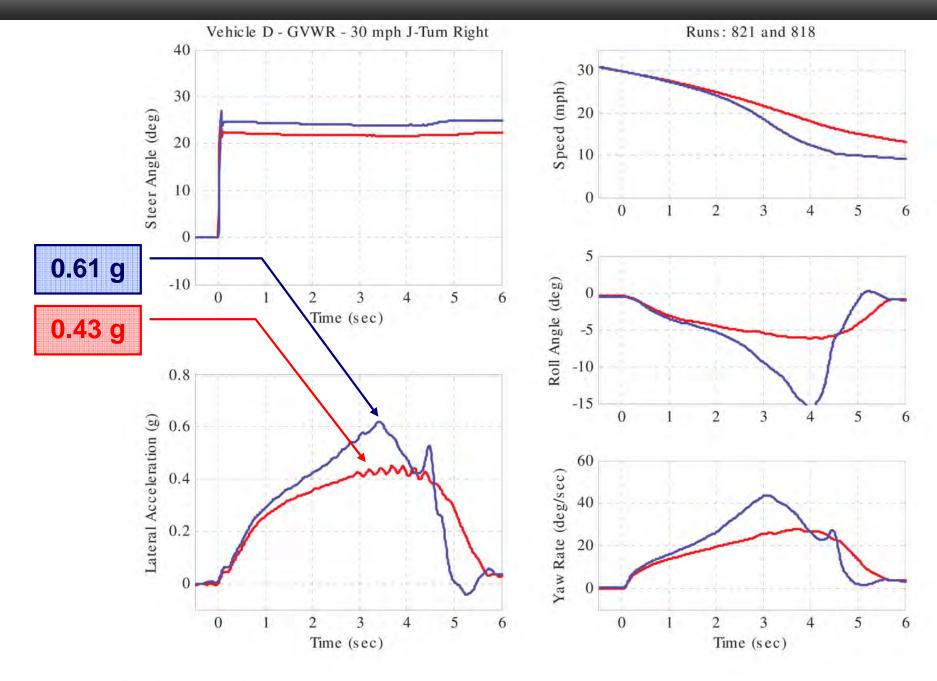
CPSC Response – Question 4


A: In Section 4.5 of the April 2011 report SEA states: "...the blue lines are the tests with the minimum steering that resulted in tip-up and the red lines are the tests with the maximum steering that did not result in tip-up." There are no tests with intermediate steering or severity between these two. These blue and red lines are shown for all vehicles in both the right and left steer directions.

SEA Data – Vehicle F

Vehicle E

Single-Vehicle J-Turn Repeatability Testing Results (Left 174°) 30 mph / 500 deg/s / SEA Operator + Passenger Loading

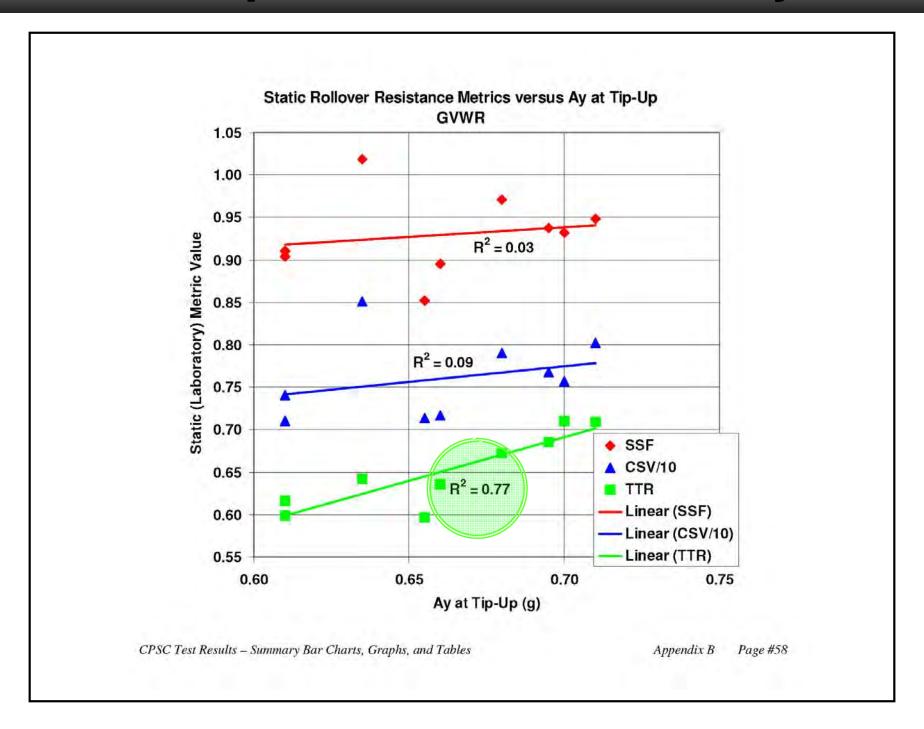

ROHVA Question 6

Q: From page 12 of the SEA report, ROHVA understands that "...tip-up events are considered those that produced significant two-wheel lift and in almost all cases outrigger contact." Please identify the number of drop throttle J-Turn tests performed by SEA where 2-wheel lift was observed without outrigger contact. Please provide this data, by machine, for both loading conditions tested. If the precise number of runs cannot be provided, please provide an approximate anecdotal answer rounding to the nearest 10%.

CPSC Response – Question 6

The statement "For this testing, tip-up events are considered those that produced significant two-wheel lift and in almost all cases outrigger contact," is describing that the lateral threshold testing of these vehicles resulted in two-wheel lift that would have continued into a 90 degree rollover if the outrigger did not prevent the rollover event from occurring. Therefore, to determine the minimum lateral acceleration required to induce rollover, the tests were repeated at smaller and smaller steer angles until the vehicle exhibited just enough two-wheel lift to measure that minimum lateral acceleration but not enough to make outrigger contact (and thereby incorrectly measure the lateral acceleration caused by outrigger impact with the ground). 100% of the J-Turn tests that measured the minimum lateral acceleration of the vehicle at rollover threshold exhibited 2-wheel lift without outrigger contact since by definition that was how the value was measured.

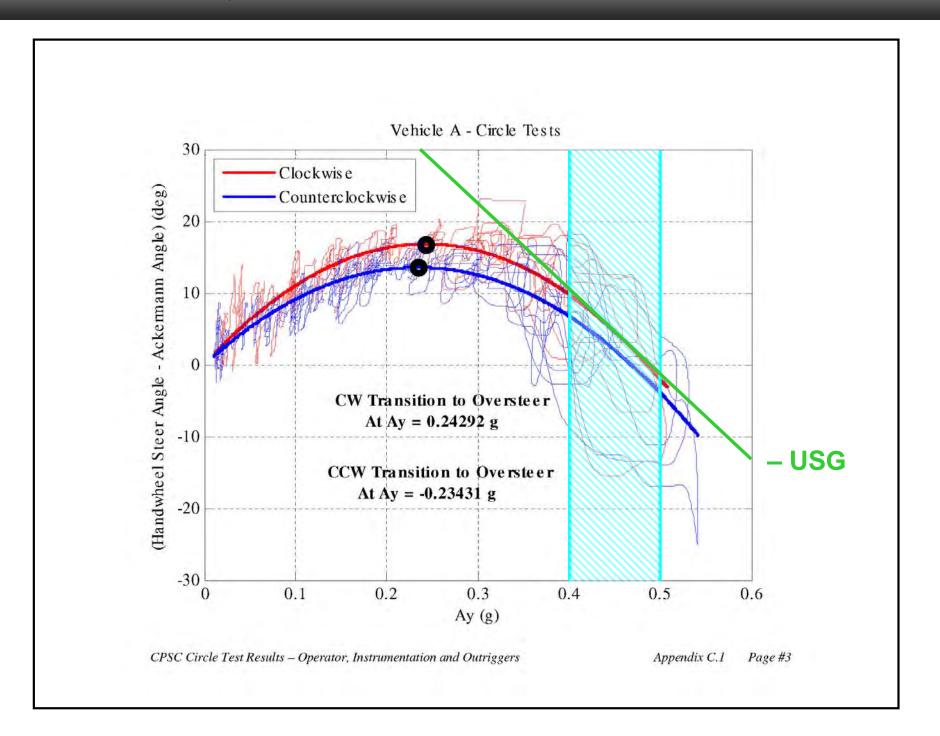
SEA Data – Vehicle D


SEA Data – Vehicle D

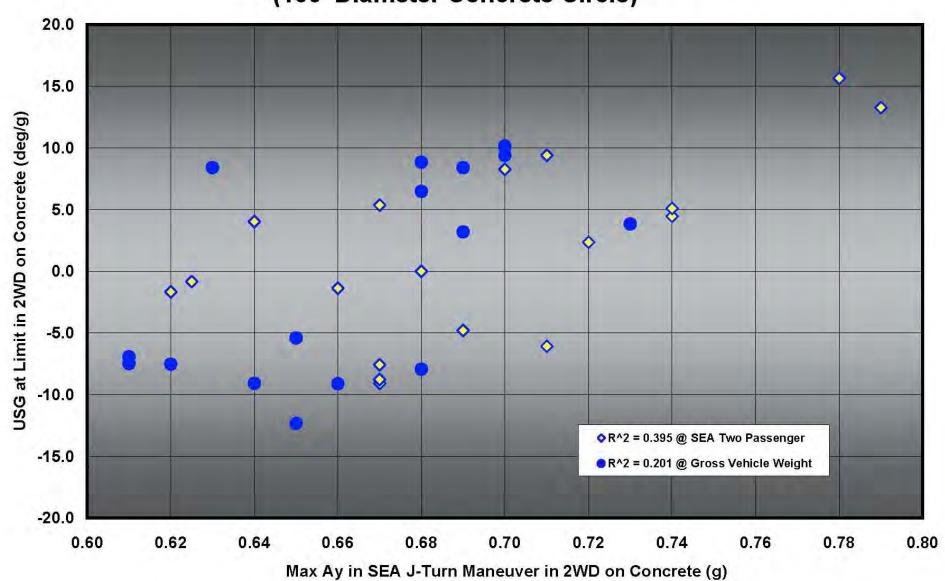
Maximum Lateral Accelerations During Dropped Throttle J-Turns Vehicle D – GVWR Loading

	Right Steer Maneuvers		Left Steer Maneuvers		Average of Right and Left Maneuvers	
Percentage of Steering Required for Two Wheel Lift (%)	Steering Angle (deg)	Lateral Accel. (g)	Steering Angle (deg)	Lateral Accel. (g)	Steering Angle (deg)	Lateral Accel. (g)
0.0	0.0	0.00	0.0	0.00	0.0	0.000
25.0	6.3	0.09	-6.9	-0.10	6.6	0.095
50.0	12.5	0.17	-13.8	-0.21	13.1	0.190
75.0	18.8	0.26	-20.6	-0.37	19.7	0.315
87.5	21.9	0.48	-24.1	-0.54	23.0	0.510
100.0	25.0	0.61	-27.5	-0.61	26.3	0.610

Understeer Correlation Study


SEA Report Correlation Analysis

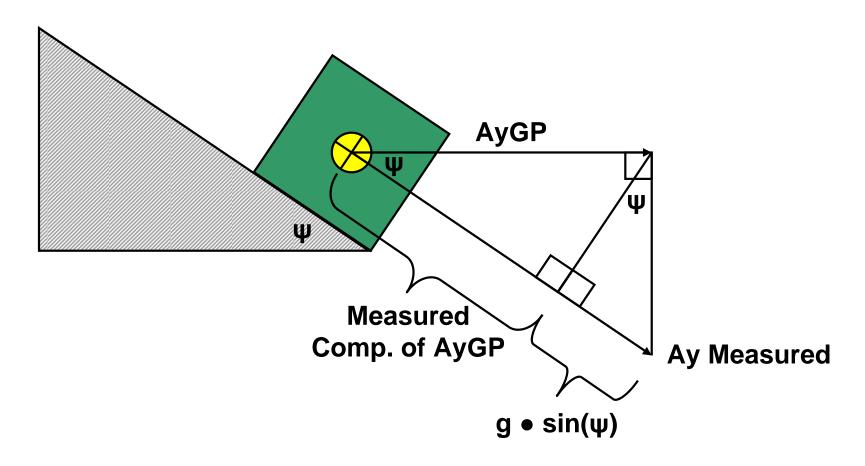
SEA Report Correlation Analysis


Pages 44 and 45 (Operator and Passenger) and Pages 57 and 58 (GVWR) contain exhibits comparing the laboratory rollover resistance metrics to the lateral accelerations required for tipups in the dropped throttle J-turns. Pages 44 and 57 are bar charts of the values, while Pages 45 and 58 are graphs with plots of the rollover resistance metrics versus lateral acceleration at tipup. Linear fits of the plots are also provided on the graphs. The graphs on Pages 45 and 58 indicate that TTR has a better correlation to lateral acceleration at tip-up than do SSF or CSV. However, none of the static metrics examined correlated very well with the minimum lateral acceleration thresholds. The data for Vehicle I, the four-passenger vehicle, has the biggest outliers from the linear fits for SSF and CSV in both loading configurations.

Quantification of USG

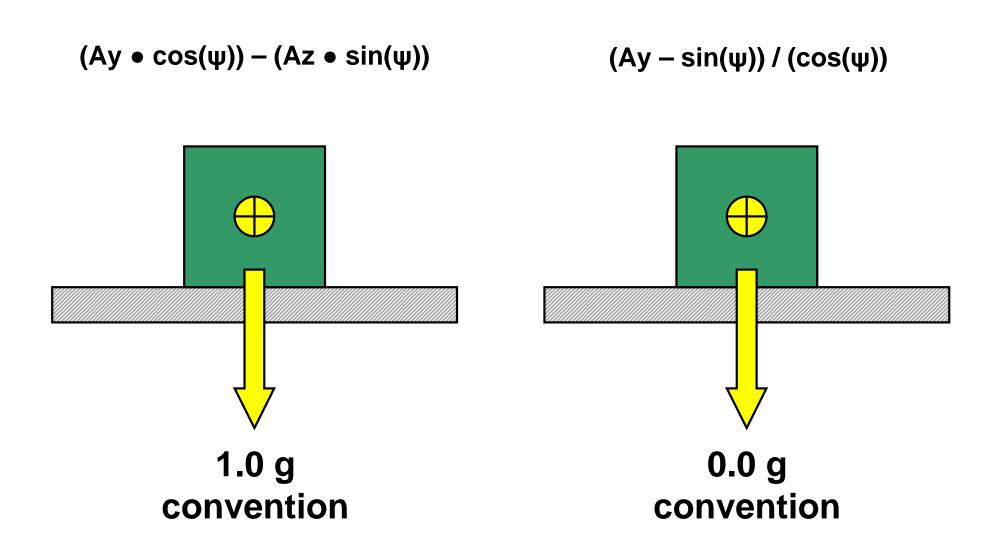
USG Correlation on Concrete

SEA Understeer Gradient v SEA J-Turn Max Ay (100' Diameter Concrete Circle)



USG Correlation Summary

	SEA Two Passenger	SEA GVW Loading
USG (Concrete) v. SEA Max Ay	0.40	0.20
USG (Concrete) v. SEA TTA	0.27	0.40
USG (Concrete) v. SEA SSF	0.23	0.02
USG (Dirt) v. SEA Max Ay	0.00	0.04
USG (Dirt) v. SEA TTA	0.01	0.07
USG (Dirt) v. SEA SSF	0.07	0.01


Ay Body Roll Correction Factor

Ay Body Roll Correction Factor

- 1. Measured Comp. of AyGP = $(AyGP \bullet cos(\psi))$
- 2. Ay Measured = $(AyGP \bullet cos(\psi)) + (g \bullet sin(\psi))$
- 3. AyGP = (Ay Measured $sin(\psi)$) / ($cos(\psi)$) in units of g

Ay Body Roll Correction Factor

49 CFR Part 563 – EDR

 "Delphi recommended that NHTSA provide greater specificity in the definition of 0 G normal acceleration, because the term 0 G is used inconsistently within the industry (e.g., 0 G is sometimes normalized for the 1 G bias due to gravity). We agree with Delphi's comments and have revised the definition."