Benzyl acetate

NAME OF SUBSTANCE | BENZYL ACETATE
CAS REGISTRY NUMBER | 140-11-4

TOXIC HAZARD RATING

HUMAN TOXICITY EXCERPTS

HUMAN TOXICITY EXCERPTS
-Benzyl acetates are of low volatility & except for local irritation, no effects have been reported in man. [Patty, F. (ed.). Industrial Hygiene and Toxicology: Volume II: Toxicology. 2nd ed. New York: Interscience Publishers, 1963., p. 1864] **PEER REVIEWED**

SUMMARY TOXICITY STATEMENT; Acute= moderate via oral route. An irritant. Moderate= may cause reversible or irreversible changes to exposed tissue, not permanent injury or death; can cause considerable discomfort. [Sax, N. L. Dangerous Properties of Industrial Materials. 5th ed. New York: Van Nostrand Rheinhold, 1979., p. 409] **PEER REVIEWED**

HUMAN TOXICITY EXCERPTS
-Benzyl acetate produces respiratory tract irritation and narcotic effects in humans, and continued exposure to benzyl acetate at an ambient concentration of 50 ppm results in kidney damage. [DHHS/NTP; Toxicology and Carcinogenesis Studies of Benzyl acetate in F344/N Rats and B6C3F1 Mice (Gavage Studies) p. 19 (1986) Technical Rpt Series No. 250 NIH Pub No. 86-2506] **PEER REVIEWED**

NON-HUMAN TOXICITY EXCERPTS
CATS EXPOSED TO 180 PPM 8-9 HR FOR 7 DAYS: RESULTS INCLUDE:

- GRADUAL WEAKNESS;
- LOSS OF APPETITE & WEIGHT;
- DROWSINESS;
- DEATH. [FROM TABLE/]

NON-HUMAN TOXICITY EXCERPTS

... IN MODERATE CONCENTRATION VAPOR IS RATHER IRRITATING TO EYES. DISCOMFORT TENDS TO DIMINISH DURING CONTINUED EXPOSURE. TESTING BY APPLICATION OF DROP OF LIQUID TO EYES OF RABBITS CAUSED IMMEDIATE BLEPHAROSPASM FOR MINUTE DESPITE PREVIOUS APPLICATION OF LOCAL ANESTHETIC. CORNEAS WERE FOUND NOT TO BE DAMAGED. {Grant, W. M. Toxicology of the Eye. 2nd ed. Springfield, Illinois: Charles C. Thomas, 1974. , p. 183] **PEER REVIEWED**

NON-HUMAN TOXICITY EXCERPTS

NON-HUMAN TOXICITY EXCERPTS

NON-HUMAN TOXICITY EXCERPTS

Benzyl acetate was found to be negative when tested for mutagenicity using the Salmonella/microsome preincubation assay, using the standard protocol approved by the National Toxicology Program (NTP). Benzyl acetate was tested in as many as 5 Salmonella typhimurium strains (TA1535, TA1537, TA97, TA98, and TA100) in the presence and absence of rat and hamster liver S9, at doses of 0.033, 0.100, 0.333, 1.000, 3.333, and 10.000 mg/plate. The highest ineffective dose tested in any Salmonella typhimurium strain was 10.000 mg/plate. [Mortelmans K et al; Environ Mutagen 8: l-l 19 (1986)] **PEER REVIEWED**

NON-HUMAN TOXICITY EXCERPTS

Benzyl acetate gave negative results in an assay for differential killing of repair proficient and deficient strains of Bacillus subtilis H17 and M45, and it was not mutagenic in strains TA1535, TA1537, TA98, or TA100 of Salmonella in the presence or absence of Aroclor 1254-induced rat liver S9. In tests performed by the NTP, neither benzyl acetate nor benzyl alcohol was mutagenic in Salmonella in the presence or absence of Aroclor 1254-induced Sprague Dawley rat or Syrian hamster liver S9. In cultured Chinese hamster ovary cells, benzyl acetate did not induce sister chromatid exchanges or chromosomal aberrations. Benzyl acetate was mutagenic in the L5178Y/TK + or - mouse lymphoma assay in the presence, but not in the absence, of Aroclor 1254-induced rat liver S9. Benzyl acetate did not induce unscheduled DNA synthesis in Fischer 344 rat hepatocytes following in vivo and in vitro treatment. [DHHS/NTI; Toxicology and Carcinogenesis Studies of Benzyl Acetate in F344/N Rats and B6C3F1 Mice (Gavage Studies) p.19 (1986) Technical Rpt Series No. 250 NIH Pub No. 86-2506] **PEER REVIEWED**

NON-HUMAN TOXICITY EXCERPTS

Urine flow in dogs and rabbits increased approximately 180% two hours after they received an
ip injection of 0.4 ml/kg body weight. [DHHS/NTP; Toxicology and Carcinogenesis Studies of Benzyl Acetate in F344/N Rats and B6C3F1 Mice (Gavage Studies) p. 18 (1986) Technical Rpt Series No. 250 NIH Pub No. 86-2506] *PEER REVIEWED*

NON-HUMAN TOXICITY VALUES

Rat (Osborne-Mendel) oral 2.49 g/kg [DHHS/NTP; Toxicology and Carcinogenesis Studies of Benzyl Acetate in F344/N Rats and B6C3F1 Mice (Gavage Studies) p. 18 (1986) Technical Rpt Series No. 250 NIH Pub No. 86-2506] *PEER REVIEWED*

NATIONAL TOXICOLOGY PROGRAM REPORTS

Benzyl acetate >99% pure was administered in corn oil by gavage to groups of 50 male 50 female F344/N rats at doses of 0, 250, or 500 mg/kg body weight and to groups of 50 male and 50 female B6C3F1 mice at doses of 0, 500, or 1000 mg/kg once daily five of days per week for 103 weeks. The absence of any observable adverse effect of benzyl acetate on the survival or mean body weight gains of the rats or mice in the 2 year studies suggests that both the rats and the mice of each sex could have tolerated higher doses. An infection in the genital tract was probably responsible for the deaths of 26/35 control, 14/32 low dose, and 8/20 high dose female mice before the end of the study. Acinar cell adenomas in the pancreas of male rats occurred with a positive trend (p<0.01), and the incidence in the high dose group (37/49, 76%) was significantly (p<0.01) higher than in the vehicle controls (22/50, 44%). The incidence of these tumors in the low dose group (27/150, 54%) was comparable to that in the gavage controls. Acinar cell hyperplasia in the pancreas was observed in 37/50 control, 34/50 low dose, and 36/49 high dose male rats. No acinar cell hyperplasia or adenoma of the pancreas was observed in female rats. The incidence of retinopathy and cataracts in the high dose male rats was increased compared with the controls (retinopathy: 1/50; 0/50; 1/50; 0/50; 0/50; 13/50). Low dose female rats had an increased incidence of retinopathy (18/50). Retinopathy and cataracts in rats have been associated with proximity to fluorescent light in this and previous studies. Preputial gland neoplasms occurred with a positive trend (p<0.05) in male rats (cystadenocarcinoma: 0/50; 0/50; 3/50; all adenocarcinoma: 0/50; 1/50; 4/50; adenocarcinoma or carcinoma combined: 1/50; 1/50; 6/50). However, the incidence of all preputial gland tumors was not significantly elevated (2/50; 1/50; 6/50). For female rats the incidence of clitoral gland neoplasms was marginally increased (2/50; 0/50; 5/50). Hepatocellular adenomas occurred in mice of each sex with statistically significantly positive trends (males: 0/50; 5/49; 15/50; females: 0/50; 0/50; 6/50), and the incidences in the high dose groups were greater than those in the controls (males: p<0.001; females: p<0.05).

Hepatocellular carcinomas were marginally elevated in dosed male and high dose female mice (males: 10/50; 14/49; 12/50; females: 1/50; 0/50; 5/50). Squamous cell papillomas or carcinomas of the forestomach (uncommon neoplasms) occurred with a positive trend (p<0.05) in male mice (4/49; 4/48; 11149). The incidence of these tumors was also marginally (p<0.05) increased in the high dose female mice (0/50; 0/50; 4/48). The incidences of these tumors in both the high dose male and high dose female mice were considerably higher than the historical mm oil gavage control rates at this laboratory (males: 2/296, 0.7%; females: 2/297, 0.7%) and throughout the program (males: 14/1,070, 1.3%; females: 3/1,073, 0.3%). Fore stomach hyperplasia occurred at increased incidences in dosed mice of either sex (males: 1/49, 7/48, 22/49; females: 1/50, 6/50, 17/48). These neoplasms and hyperplasia of the forestomach were probably related to administration of benzyl acetate. [DHHS/NTP; Toxicology and Carcinogenesis Studies of Benzyl acetate in F344/N Rats and B6C3F1 Mice (Gavage Studies) p. 7 (1986) Technical Rpt Series No. 250 NIH Pub No. 86-2506] *PEER REVIEWED*
IARC SUMMARY AND EVALUATION
APPENDIX 8

RESPIRATORY DEPRESSION VS. TIME FOR INDIVIDUAL EXPOSURES TO TARGET COMPOUNDS AND MIXTURES
1,2,3-Trichloropropane
27.0 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-2

1,2,3-Trichloropropane
34.1 mg/m³
FIGURE B-3

1,2,3-Trichloropropane
46.5 mg/m3

% of Baseline

0 20 40 60 80 100 120 140

Concentration (mg/m3)

0 50 100 150 200 250 300

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-4

1,2,3-Trichloropropane
59.7 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL THC response (mg/m³)
FIGURE B-5

1,2,3-Trichloropropane
62.1 mg/m³

% of Baseline

0 20 40 60 80 100 120 140

Concentration (mg/m³)

0 20 40 60 80 100 120 140

Time (min)

% of BL THC response (mg/m³)

Cl
Cl-C₃H₆Cl₃
FIGURE B-6

1,2,3-Trichloropropane
212 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

- % of BL
- THC response (mg/m3)
FIGURE B-7

1,2,3-Trichloropropane
392 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-8

1,2,3-Trichloropropane
576 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

- % of BL
- THC response (mg/m3)
FIGURE B-9

N,N-Dimethylacrylamide
43.6 mg/m³

Time (min)
FIGURE B-10

N,N-Dimethylacrylamide

52.6 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

- % of BL
- THC response (mg/m³)
FIGURE B-1

N,N-Dimethylacrylamide
71.9 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL THC response (mg/m³)
FIGURE B-12

N,N-Dimethylacrylamide
197 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL THC response (mg/m³)
FIGURE B-13

N,N-Dimethylacrylamide
400 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-14

1,4-Dimethylpiperazine
6.2 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-1

1,4-Dimethylpiperazine
8.3 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

- % of BL
- THC response (mg/m³)
FIGURE B-1 6

1,4-Dimethylpiperazine
11.8 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-17

1,4-Dimethylpiperazine
26.5 mg/m3

% of Baseline

Concentration (mg/m3)

0 20 40 60 80 100 120

Time (min)

- % of BL
- THC response (mg/m3)
FIGURE B-I 8

1,4-Dimethylpiperazine
72.0 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

--- % of BL
--- THC response (mg/m3)
FIGURE B-19

1,4-Dimethylpiperazine
239 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

- % of BL
- THC response (mg/m3)
FIGURE B-20

N,N-Dimethylbenzylamine
24.4 mg/lm3

% of Baseline

Concentration (ng/mL)

Time (min)

% of BL

THC response (mg/lm3)
FIGURE B-22

N,N-Dimethylbenzylamine
93.1 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL THC response (mg/m³)
FIGURE B-23

N,N-Dimethylbenzylamine
270 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-25

N,N-Dimethylacetamide
440 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-26

2-Methyleneglutaronitrile
18.4 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-27

2-Methylene glutaronitrile

31.5 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-28

2-Methyleneglutaronitrile
49.7 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL THC response (mg/m³)
FIGURE B-29

2-Methyleneglutaronitrile
88.3 mg/m³

<table>
<thead>
<tr>
<th>% of Baseline</th>
<th>Concentration (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>120</td>
<td>300</td>
</tr>
</tbody>
</table>

Time (min)

- % of BL
- THC response (mg/m³)
FIGURE B-30

2-Methyleneglutaronitrile

10^3 mg/m^3

% of Baseline

Concentration (mg/m3)

Time (min)

- % of BL
- THC response (mg/m3)
FIGURE B-40

Benzothiazole
25.9 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-41

Benzothiazole
47.1 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-42

Benzothiazole
80.5 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL THC response (mg/m³)
FIGURE B-43

Benzothiazole
150 mg/m³

% of Baseline

Time (min)

Exposure concentration (mg/m³)

% of BL

THC response (mg/m³)
FIGURE B-44

2-Ethylhexanoic acid
199 mg/m³
FIGURE B-45

4-Phenylcyclohexene
22.5 mg/lm3

Time (min)

% of Baseline

Concentration (mg/lm3)

% of BL

THC response (mg/lm3)
FIGURE B-46

4-Phenylcyclohexene
42.4 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

- % of BL
- THC response (mg/m³)
FIGURE B-47

4-Phenylcyclohexene
57.7 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL

THC response (mg/m³)
FIGURE B-48

4-Phenylcyclohexene
87.5 mg/m3

% of Baseline

Time (min)

Concentration (mg/m3)

- % of BL
 — THC response (mg/m3)
FIGURE B-49

4-Phenylcyclohexene
115 mg/m³

% of Baseline

Time (min)

Concentration (mg/m³)

THC Bl e s p o n s e (mg/m³)
FIGURE B-50

4-Phenylcyclohexene
138 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL THC response (mg/m3)
FIGURE B-51

4-Phenylcyclohexene
142 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-52

4-Phenylcyclohexene
150 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

--- % of BL --- THC response (mg/m³)
FIGURE B-53

4-Phenylcyclohexene
195 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-54

1.3-Dichloro-2-propanol
13.3 mg/m³

% of Easeling

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-55

1,3-Dichloro-2-propanol
95.5 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

0
20
40
60
80
100
120

0
20
40
60
80
100
120

- % of BL

- THC response (mg/m³)
FIGURE B-56

1,3-Dichloro-2-propanol
117 mg/m³
FIGURE B-57

1,3-Dichloro-2-propanol
269 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

-% of BL

THC response (mg/m³)
FIGURE B-58

1,3-Dichloro-2-propanol
552 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-59

1,3-Dichloro-2-propanol
962 mg/m3

% of Baseline

Concentration (mg/m3)

Time (min)
FIGURE B-60

1-Dodecanol
0.5 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL THC response (mg/m³)
FIGURE B-61

Caprolactam
13.5 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

0 20 40 60 80 100 120

0 5 10 15 20 25 30

% of BL

THC response (mg/m³)
FIGURE B-62

Limonene
76.4 mg/m3

% of Baseline

Concentration (mg/m3)

0 20 40 60 80 100 120

Time (min)

% of BL

THC response (mg/m3)
FIGURE B-63

2-Methylnaphthalene
2.6 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-64

2-Methylnaphthalene
4.4 mg/m3

% of baseline vs. time (min)

Concentration (mg/m3)

- % of BL
- THC response (mg/m3)
FIGURE B-65

2-Methylnaphthalene
4.5 mg/m³

Time (min)

% of Baseline

Concentration (mg/m³)

% of BL THC response (mg/m³)
FIGURE B-66

2-Methylnaphthalene

6.1 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-67

2-Methylnaphthalene
7.4 mg/m³
FIGURE B-68

2-Methylnaphthalene
12.4 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)
FIGURE B-69

2-Methylnaphthalene

20.9 mg/m³

% of Baseline

Concentration (mg/m³)

Time (min)

% of BL

THC response (mg/m³)