LOG OF MEETING

DATE: June 4, 2019
SUBJECT: Chemical hazards
ATTENDEES: Arlene Blum, Green Science Policy Institute
 Mary Gant, Green Science Policy Institute
 Kathryn Rodgers, Silent Spring Institute
 Sean Oberle, Product Safety Letter
 Lane Hochschwender, American Chemistry Council
CPSC ATTENDEES: Commissioner Kaye, J. Fong-Swamidoss, A. Steinle, J. Midgett
SUMMARY: Participants discussed the toxicology of hazards associated with flame retardants, highly fluorinated chemicals and other hazardous chemical classes and potential policy responses to address them. Slides below.
LOG AUTHOR: J. Midgett
LOG CREATION DATE: June 4, 2019

The Chemical Class Concept:
Fire Safety without Harm

Arlene Blum PhD
Founder, Green Science Policy Institute
Research Associate in Chemistry, UC Berkeley

June 4, 2019
U.S. Toxic Substances Control Act (1976)

• 62,000 previous chemicals “grandfathered”

• 23,000 new chemicals
 – 85% have no health data
 – 67% have no data at all
Regrettable Substitution

Decabromodiphenyl ether
Concerns:
• Persistence
• Bioaccumulation
• Toxicity

Decabromodiphenyl ethane
Concerns:
• Persistence
• Bioaccumulation
• Toxicity

EVALUATING TENS OF THOUSANDS OF INDIVIDUAL CHEMICALS IS UNWORKABLE
Six Classes Videos
An innovative approach to reducing toxics

VIEW and SHARE: www.SixClasses.org
Healthier products, healthier people in four minutes!
Six Classes Videos
An innovative approach to reducing toxics

1 Highly Fluorinated
2 Antimicrobials
3 Flame Retardants
4 Bisphenols + Phthalates
5 Some Solvents
6 Certain Metals

VIEW and SHARE: www.SixClasses.org
Healthier products, healthier people in four minutes!

Is it necessary?
Is it worth it?
Is there a safer alternative?
Class 3 Flame retardants

Updating 1970s Flammability Standards

• Children’s sleepwear --1977

• Furniture and baby product foam --2014

• Electronics enclosures-- ?

TRIS-Treated Children's Garments Banned

April, 1977

Chlorinated Tris replaced Brominated Tris

• Removed from pajamas in 1978
• Used in furniture until 2012
California TB117-2013

PETITION: U.S. Consumer Product Safety Commission

Products Containing Organohalogen Flame Retardants

Declaré as “banned hazardous substances”:

• Children’s products
• Residential furniture
• Mattresses & mattress pads
• Plastic electronics enclosures

containing additive, non-polymeric organohalogen FRs

GRANTED – 20 September 2017

GREEN/SCIENCE POLICY INSTITUTE
www.GreenSciencePolicy.org
CPSC Organohalogen Petition Hearing 2017
3-minute-long video excerpts

A Landmark Decision on Toxics

GreenSciencePolicy.org/CPSCPetition

City of San Francisco
Upholstered Furniture & Children’s Products

NO Flame Retardants

(courtesy Jen Jackson)
California Bans Flame Retardants
in furniture, children’s products & mattress foam
Signed September 30, 2018

“Toxic flame retardant chemicals have put consumers, children, and firefighters at risk for decades. Today we say no more.”

-AB 2998, Sponsor: Assemblyman Bloom

Repeal of Technical Bulletin 133

- TB133 required open-flame testing of upholstered furniture in high occupancy public spaces (offices, hotels)
- Limited fire safety benefit
- High levels of flame retardants needed
- Repealed January 2019
UK Parliamentary Inquiry on Toxic Chemicals

- February – May 2019: House of Commons Environmental Audit Committee inquiry on toxic chemicals
- “Focus on how toxic chemicals are used in furniture, food and toys, current government regulation...and environmental and human health problems.”
- May change the Furniture and Furnishings Fire Safety Regulations

8. Are the Furniture and Furnishings (Fire Safety) Regulations 1988 (as amended in 1989, 1993 and 2010) fit for purpose? If not, which aspects should be updated?

Open flame standards protect a specific range of fires to meet a test

British standard: severe flammability standard met with flame retardants and/or barriers

will resist 2 pieces of burning newspaper

cannot resist 4 pieces of burning newspaper

Crewe 2013
Flame Retardants in Electronics

Increased FRs from Electronics in Use

Czech Republic study of air samples in a newly built classroom at 8 points in time, measuring flame retardants.

https://pubs.acs.org/doi/10.1021/acs.estlett.7b00346
Increased FRs from Electronics in Use

![Bar charts showing FR concentrations](chart.png)

https://pubs.acs.org/doi/10.1021/acs.est.7b03245

Recycling Flame Retarded Plastics
Flame Retardants in Kitchen Utensils

- Black plastic often contains BFRs
- BFRs found in 34% of tested utensils
- Up to 20% of BFRs transferred to hot cooking oil

Kuang et al., Science of the Total Environment, 2018
EU Ban on Flame Retardants in Electronics Cases

- Ecodesign directive bans all organohalogen flame retardants
 - For cases and stands of electronic displays and TVs
 - Unanimously approved by 24 member states on December 19, 2018
 - Starting in 2021
 - Justification is need for plastic recycling in the Circular Economy

4. Halogenated flame retardants

The use of halogenated flame retardants is not allowed in the enclosure and stand of electronic displays.

Fire safety tools

- Decrease in smoking/fire-safe cigarettes
- Fire-safe candles, child-safe lighters
- Photoelectric smoke detectors/alarms
- Sprinklers
- Work of fire service
- Fire codes
- Fire safety education
- Furniture regulations
 - Smolder standard: TB117-2013
 - Open flame, “barrier standard”
 (Only open flame standards have potential for harm)

With improved flammability standards

We can have both fire safety and a healthier world.

Google: Green Science Policy
www.GreenSciencePolicy.org
Risks from upholstered furniture fires in Massachusetts (2003-2016)\(^1\)

Kathryn Rodgers, MPH
Silent Spring Institute

Study objectives

1. Use MFIRS data (93% reporting rate by Massachusetts fire departments) to evaluate the risk of casualties with fires that started with upholstered furniture, as a state case study.

2. Examine the role of heat source – specifically open flame and smoking materials – in furniture fire casualties.
Methods

- Analyzed 34,081 MFIRS records from 2003-2016
 - Eliminated 124,781 residential structure fires that were arson, non-residential, in vacant buildings, non-enclosed buildings, mobile homes, or confined
- 1. Calculated odds of death, severe casualty, and casualty for 12 risk factors (area of origin, human factors (e.g. impaired, disabled), smoke detector operation, fire spread, property use, equipment involved in ignition, season, time of day, fire year, and urbanicity).
- 2. Calculated odds of death, severe casualty, and casualty for interaction between heat source and upholstered furniture as item first ignited.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Death</th>
<th>Severe Casualty</th>
<th>Casualty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratio</td>
<td>Odds Ratio</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td></td>
<td>95% CI</td>
<td>95% CI</td>
<td>95% CI</td>
</tr>
<tr>
<td>Item First Ignited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other IFI Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upholstered furniture (3.2, 5.98)</td>
<td>(2.79, 4.76)</td>
<td>(1.61, 2.33)</td>
<td></td>
</tr>
<tr>
<td>Missing/undetermined (2.25, 1.96)</td>
<td>(1.59, 2.42)</td>
<td>(1.12, 1.41)</td>
<td></td>
</tr>
<tr>
<td>IFI (1.73, 2.92)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other heat source Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open flame (2.11, 4.86)</td>
<td>(1.58, 2.64)</td>
<td>(1.56, 2.03)</td>
<td></td>
</tr>
<tr>
<td>Smoking materials (9.15, 4.33)</td>
<td>(3.88, 5.53)</td>
<td>(1.54, 2.03)</td>
<td></td>
</tr>
<tr>
<td>Other smoking materials or open flame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing/undetermined (2.58, 2.02)</td>
<td>(1.58, 2.59)</td>
<td>(1.22, 1.58)</td>
<td></td>
</tr>
</tbody>
</table>
Odds of death and casualty for interaction between upholstered furniture and heat source

<table>
<thead>
<tr>
<th>Item First Ignited</th>
<th>Heat Source</th>
<th>Death</th>
<th>Severe Casualty</th>
<th>Casualty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upholstered furniture</td>
<td>Open flame</td>
<td>Ref.</td>
<td>Ref.</td>
<td>Ref.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.40 (85% CI: 2.68)</td>
<td>1.67 (95% CI: 1.18, 7.09)</td>
<td></td>
</tr>
<tr>
<td>Smoking materials</td>
<td>(1.34, 10.94)**</td>
<td>(1.18, 7.09)**</td>
<td>(0.90, 3.29) *</td>
<td></td>
</tr>
<tr>
<td>Other smoking</td>
<td>0.46 (95% CI: 0.31)</td>
<td>1.96 (95% CI: 0.58, 6.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>materials or open flame</td>
<td>0.43 (95% CI: 0.61)</td>
<td>0.74 (95% CI: 0.37, 1.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other heat source</td>
<td>(0.13, 1.58) (95% CI: 0.23, 1.79)</td>
<td>(0.37, 1.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing/undetermined</td>
<td>(0.04, 2.08) (95% CI: 0.14, 2.20)</td>
<td>(0.26, 1.56)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regression controlled for human factors (e.g., impaired, disabled), area fire originated in, equipment involved in ignition, season, time of day, and fire year.

Residential fire fatalities by heat source and item first ignited

1 cell = a single deadly fire

Heat Source:
- Open Flame
- Smoking Materials
- Other Smoking Materials/Open Flame
- Other Heat Sources
- Missing/Undetermined Heat Source

Item First Ignited:
- Other/Undetermined Item First Ignited
- Upholstered Furniture
Upshot

- Furniture flammability standards that target open flames and rely on flame retardant chemicals:
 a) aren’t targeting the most dangerous fires
 b) lead to widespread exposures to toxic flame retardants unnecessarily
- Data from Massachusetts shows furniture fires started by smoking materials are more frequent and dangerous than those started by open flames.
- 2012-2014 CPSC data shows nationally, 41% of upholstered furniture fire fatalities were in fires ignited by smoking materials, while 4.5% were ignited by open flames (Miller, 2017).